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ABSTRACT: The paper develops and implements a numerical method for solving fractional
order Fredholm Volterra integro di¤erential equations with Dirichlet boundary conditions using

the shifted Legendre collocation method. The proposed method is formulated by �rst obtaining

the integral form of the given model equation, followed by applying the collocation technique

to generate a system of nonlinear equations. These nonlinear equations are then solved using

Newton-Raphson�s iterative method. The accuracy and e¢ ciency of the developed method are

analyzed, demonstrating that the obtained solutions are continuous and exhibit convergence.

The uniqueness of the solution is established, further validating the reliability of the approach.

To assess the e¤ectiveness of the method, several numerical examples are presented, comparing

the obtained results with existing techniques. The numerical experiments con�rm that the

proposed approach yields highly accurate solutions while maintaining computational e¢ ciency.

This study shows the applicability of the shifted Legendre collocation method in solving complex

integro-di¤erential equations.
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1. INTRODUCTION

Fractional calculus have great importance in the �eld of Mathematics, Physics, Chemistry

and Engineering. Mathematical modeling of real life problems usually arises in functional

equations such as ordinary and partial di¤erential equations. Many mathematical formulations

in physical phenomena contain Integro Di¤erential Equations (IDEs), these equations appear in

modelling some phenomena in Science and Engineering. Examples include, the kinetic equations

which form the basis of the kinetic theory of rare�ed gases, plasma, radiation transfer and

coagulation [8]. IDEs have been used to model heat and mass di¤usion processes, biological

species coexistence together with increasing and decreasing rate of growth; electromagnetic

theory and ocean circulation [2]. IDE is an equation in which the unknown function y (x)

appears under an integral sign and contains ordinary derivatives [17]. IDEs are usually di¢ cult

to solve analytically so it requires to obtain an e¢ cient approximate or numerical solution [21].

Recently, there has been a growing interest in the area of fractional calculus; this is because

fractional calculus provides more accurate models of many engineering system than integer

order derivatives and integrals [22].

Recently, the numerical analysis of fractional integro-di¤erential equations has witnessed a

signi�cant boost due to their e¢ ciency in describing systems with memory and hereditary

properties, surpassing their counterparts. These systems emerge in various �elds of study,
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where fractional order dynamics yield superior predictive models. A range of basis functions

and numerical schemes has been developed to handle the computational challenges presented

by such systems. For example, the introduction of an e¢ cient Chebyshev method for Volterra

integral equations [4], shows that accuracy is obtainable through polynomial approximation.

Similarly, the Lagrange polynomial for solving nonlinear fractional integro-di¤erential equations

shows notable advancements in convergence and stability for nonlinear systems with variable

coe¢ cients [11, 20].

Moreover, a variety of hybrid and orthogonal function-based methods have been developed

to strengthen both accuracy and computational e¢ ciency in solving fractional systems. The

use of fractional order Legendre-Laguerre functions enables the e¢ cient resolution of fractional

PDEs due to their orthogonality and adaptability across unbounded domains [7]. Similarly,

fractional-order Legendre wavelets [15] and block methods [18] have emerged as potent alternatives

in addressing sti¤and high-order fractional integro-di¤erential equations. [24] further emphasised

the structural characteristics and operational importance of fractional derivatives in modelling

complex systems. These recent advancements provide a solid foundation for the continued

development of collocation methods, particularly those based on shifted orthogonal polynomials.

Fractional derivatives are powerful and e¢ cient tools to describe physical systems that have long

term memory, especially in modelling complex dynamic systems. The fractional derivative of

order � > 0 has several de�nitions. Over the years, mathematicians, using their own notations

and approach, have found various de�nitions that �t the idea of a non-integer order integral

or derivative. One version that has been popularized in the world of fractional calculus is the

Riemann - Liouville de�nition. For the fractional derivative, the Caputo�s de�nition is mostly

used, which is a modi�cation of the Riemann -Liouville de�nition; because it has the advantage

of dealing properly with initial value problems, since the initial condition is given in terms of

�eld variables and their integer order [12].

This paper considers the numerical solution of Fractional Order Integro Di¤erential Equations

of the form

c
0D

�
t u (t) = h (t) +Q (t)u (t) + �1

Z 1

0

w (t; s)G (u (s)) ds+ �2

Z t

0

k (t; s)F (u (s)) ds (1)

t 2 [0; 1] ; � t 2 [0; 2]subject to the boundary conditions

u (0) = �0; u (1) = �1 (2)

where c
0D

�
t (:) is the left Caputo derivative operator; h : [0; 1] ! R; Q : [0; 1] ! R; k :

[0; 1]� [0; 1]! R are continuous functions, F : [0; 1]� R! R is Lipschitzian continuous.

Most of the approaches for solving FOIDE are based on semi numerical methods such as

Adomian decomposition method, variational iteration method, Dafter-Geji and Jafari method

among others. Recently, collocation methods have been receiving attention from di¤erent

authors which include [13] developed Bernolli pseudo spectral method, [14] developed a collocation
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method for solving fractional order Ricatti di¤erential equation, [3] solves linear and non-linear

Fredholm IDE using collocation method; [9] developed Taylor expansion method.

2. BASIC DEFINITIONS

Here, we recall some basic notion, lemmas and theorems which are used in the subsequent

sections.

De�nition 2.1: q-contraction [5] Let (X; k:k) be a normed space, the mapping T : X ! X is

a q-contraction if kTx1 � Tx2k1 � q kx1 � x2k1 ; q 2 [0; 1) �xed for all x1; x2 2 X
De�nition 2.2: [23] The left Caputo�s de�nition of fractional derivative operator is given by

c
0D

�
t f (x) =

1

�(m� �)

Z t

0

(x� t)m���1f (m)(t)dt (3)

where m� 1 � � � m;m 2 N;� 2 R; t > 0.
It has the following two basic properties:

(i) D�I�f (x) = f (x)

(ii) I�D�f (x) = f (x)�
m�1X
k=0

f (k)(0+)x
k

k!
; x > 0

De�nition 2.3: [5] Let (X; k:k) be a norm space, T : X ! X is strict contraction when

kT nx1 � T nx2k1 � qn kx1 � x2k1 for all x; y 2 X

De�nition 2.4: Riemann-Liouville fractional integral [6] The Riemann-Liouville fractional
integral of order � > 0 of a continuous function u : (0;1)! R is de�ned by

0I
�
t u(t) =

1

�(�)

tZ
0

(t� s)��1 u(s)ds: (4)

De�nition 2.5: Integration of nth derivative [6] For � > 0; let u (t) be a continuous function,
then

0I
�
t (

cDu) (t) = u (t)�
��1X
k=0

ckt
k (5)

De�nition 2.6: [1] Legendre polynomial on the interval [�1; 1] and can be determined with
the aid of the recurrence formulae

Ln+1 (x) =
2n+ 1

n+ 1
xLn (x)�

n

n+ 1
Ln�1 (x) ; n = 1; 2; � � � (6)

where L0 (x) = 1; L1 (x) = x: In order to use these polynomials on the interval x 2 [0; 1] ; shifted
Legendre polynomial is then de�ned by the recurrence formula

pn+1 (x) =
(2n+ 1) (2n� 1)

(n+ 1)
pn (x)�

n

n+ 1
pn�1 (x) (7)

3



where p0 = 1; p1 (x) = 2x� 1: The analytical form of degree n is de�ned as

pn (x) =
nX
k=0

(�1)n+k � (n+ k + 1)
� (n� k + 1) (� (k + 1))2

xk (8)

3. METHODOLOGY

This section considers the development of our method, which was achieved by developing the

integral form of (1) and (2) and the algebraic equations using some lemmas.

Lemma 3.1: (Integral form) Let u (t) 2 C ([0; 1] ;R) be the solution to (1) and (2), then it is
equivalent to

u (t) = H (t)� t

� (�)

Z 1

0

(1� s)��1

264 Q (s)u (s)

+�1
R 1
0
w (s; �)G (u (�)) d�

+�2
R s
0
k (s; �)F (u (�) d�)

375 ds

+
1

� (�)

Z t

0

(t� s)��1

264 Q (s)u (s)

+�1
R 1
0
w (s; �)G (u (�)) d�

+�2
R s
0
k (s; �)F (u (�) d�)

375 ds (9)

where

H (t) = (1� t)�0 + t�1 �
t

� (�)

Z 1

0

(1� s)��1 h (s) ds+ 1

� (�)

Z t

0

(t� s)��1 h (s) ds

Proof. Let

y (t) = h (t) +Q (t)u (t) + �1

Z 1

0

w (t; s)G (u (s)) ds+ �2

Z t

0

k (t; s)F (u (s)) ds

hence (1) gives
c
0D

�
t u (t) = y (t) (10)

multiply (10) by 0I
�
t

0I
�
t
c
0D

�
t u (t) = 0I

�
t y (t)

and using (5) for 0 < � � 2

u (t)�
1X
k=0

ckt
k = 0I

�
t y (t)

thus

u (t) = c0 + c1t+ 0I
�
t y (t) (11)

considering the boundary conditions u (0) = �0

u (0) = �0 ) c0 = �0
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considering the boundary conditions u (1) = �1

u (1) = c0 + c1 + 0I
�
1 y (1)

c1 = �1 � �0 � 0I
�
1 y (1)

substituting the values of c0 and c1 in (11)

u (t) = �0 + (�1 � �0 � 0I
�
1 y (1)) t+ 0I

�
t y (t)

u (t) = (1� t)�0 + t�1 � t 0I�1 y (1) + 0I
�
t y (t)

u (t) = (1� t)�0 + t�1 � t 0I�1

 
h (t) +Q (t)u (t) + �1

R 1
0
w (t; s)G (u (s)) ds

+�2
R t
0
k (t; s)F (u (s)) ds

!

+ 0I
�
t

 
h (t) +Q (t)u (t) + �1

R 1
0
w (t; s)G (u (s)) ds

+�2
R t
0
k (t; s)F (u (s)) ds

!

using (4)

u (t) = (1� t)�0 + t�1 �
t

� (�)

Z 1

0

(1� s)��1

0B@ h (s) +Q (s)u (s)

+�1
R 1
0
w (s; �)G (u (�)) d�

+�2
R s
0
k (s; �)F (u (�)) d�

1CA ds

+
1

� (�)

Z t

0

(t� s)��1

0B@ h (s) +Q (s)u (s)

+�1
R 1
0
w (s; �)G (u (�)) d�

+�2
R s
0
k (s; �)F (u (�)) d�

1CA ds

u (t) = H (t)� t

� (�)

Z 1

0

(1� s)��1
"
Q (s)u (s) + �1

R 1
0
w (s; �)G (u (�)) d�

+�2
R s
0
k (s; �)F (u (�) d�)

#
ds

+
1

� (�)

Z t

0

(t� s)��1
"
Q (s)u (s) + �1

R 1
0
w (s; �)G (u (�)) d�

+�2
R s
0
k (s; �)F (u (�) d�)

#
ds

which is the required result.

Theorem 3.2: (Banach Contraction Principle) Let (X; k:k) be a complete norm space, then

each contraction mapping T : X ! X has a unique �xed point x of T in X, such that Tx = x

3.1 Method of Solution
Let the solution of (1) and (2) be approximated by

uN (t) = p (t)A (12)

where uN (t) is the approximate solution, p (t) =
h
p0 (t) p1 (t) � � � pN (t)

i
, pn (t) is the
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shifted Legendre polynomial de�ned by (8) and A =
h
a0 a1 � � � aN

iT
are constants to be

determined.

u (t) 2 C ([0; 1] ;R) de�ned in (12) can be written in the form

uN (t) = T (t)MA (13)

where

T (t) =
h
1 t � � � tN

i
; M =

266666664

M (0; 0) 0 0 � � � 0

M (1; 0) M (1; 1) 0 � � � 0

M (2; 0) M (2; 1) M (2; 2) � � � 0
...

...
...

...
...

M (N; 0) M (N; 1) M (N; 2) � � � M (N;N)

377777775

T

M (n; k) =
(�1)n+k � (n+ k + 1)

� (n� k + 1) (� (k + 1))2
; n > 0;M (0; 0) = 1 (14)

substituting (13) into (9) and collocating at ti; i = 0 (1)N; N 2 Z+

T (ti)MA�H (ti) +
ti

� (�)

Z 1

0

(1� s)��1

264 Q (s)T (s)MA

+�1
R 1
0
w (s; �)G(T (�)MA)d�

+�2
R s
0
k (s; �)F (T (�)MA)d�

375 ds

� 1

� (�)

Z ti

0

(ti � s)��1

264 Q (s)T (s)MA

+�1
R 1
0
w (s; �)G(T (�)MA)d�

+�2
R s
0
k (s; �)F (T (�)MA)d�

375 ds = 0 (15)

where

H (ti) = (1� ti)�0 + ti�1 �
ti

� (�)

Z 1

0

(1� s)��1 h (s) ds+ 1

� (�)

Z ti

0

(ti � s)��1 h (s) ds

which is a (N + 1)� (N + 1) nonlinear equations. We solved for A in (15) and substituted the
result into (13) to obtain the numerical solution.

Proposition 3.3: If u (x) =
h
1 x x2 � � � xN

i
; then it is equivalent to u (x; n) = xn; n =

0 (1)N; n 2 Z+

Proof. Given u (x) =
h
1 x x2 � � � xN

i
then

u (x) = u (x; n) = xn; n = 0 (1)N

Lemma 3.4: Let h 2 C ([0; 1] ;R) ; be de�ned as h (s) = sm;if
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v1 (t) =
1

� (�)

Z t

0

(t� s)��1 h (s) ds (16)

then v1 (t) is equivalent to

v1 (t) =
� (m+ 1)

� (�+m+ 1)
t�+m (17)

moreover, if

v2 (t) =
1

� (�)

Z 1

0

(1� s)��1 h (s) ds (18)

then v1 (t) is equivalent to

v2 (t) =
� (m+ 1)

� (�+m+ 1)
(19)

Proof. substituting h (s) = sm into (16), the desired result is obtained

v2 (t) = lim
t=1
v1 (t) =

� (m+ 1)

� (�+m+ 1)
t�+m

4. UNIQUENESS OF THE METHOD

Here, we assumed that the solution to equation (1) and (2) exist, we then establish the

uniqueness of the method of solution.

H1 : There exist two constants, L1 and L2 > 0; such that for any uN and u 2 C ([0; 1];R)

jG (t; uN)�G (t; u)j � L1 juN � uj

and

jF (t; uN)� F (t; u)j � L2 juN � uj

H2 : There exist two functions k� and w� 2 C ([0; 1]� [0; 1];R) ; the set of all positive functions
such that

k� = sup
x2[0;1]

Z t

0

jk (x; t)j dt <1

and

w� = sup
x2[0;1]

Z 1

0

jw (x; t)j dt <1

H3 : Q 2 C ([0; 1];R)
Q� = sup

x2[0;1]
jQ (s)j

(Uniqueness of solution)

Theorem 4.5: Let (X; k:k) be a complete norm space and T : C ([0; 1] ;R)! C ([0; 1] ;R) be
a strict q-contraction,then
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(i) T has a unique �xed point, that is FT = fxng1n=0
(ii) The Picard iteration associated to T , that is fxng1n=0 de�ned by un = T (un+1) = T n (un) ; n =
T nun; n = 1; 2; � � � converges to xr for any initial guess x0 2 X
Proof. Since T is a contraction and T : C ([0; 1] ;R)! C ([0; 1] ;R) is a Banach space. Using

the contraction principle, it shows there exist a uniue solution of T

Lemma 4.6: (Continuity) Let T : C ([0; 1] ;R) ! C ([0; 1] ;R) be a mapping de�ned by (12),
Let u (t) 2 C ([0; 1] ;R) be a solution of (1) and (2) and C ([0; 1] ;R) a Banach space. If

limN!1 uN (x) = u (x) ; then T is continuous on C ([0; 1] ;R) if kTuN (t)� Tu (t)k1 ! 0 as

N !1
Proof. Using Banach contraction principle

(Tu) (t) = H (t)� t

� (�)

Z 1

0

(1� s)��1
"
Q (s)u (s) + �1

R 1
0
w (s; �)G (u (�)) d�

+�2
R s
0
k (s; �)F (u (�) d�)

#
ds

+
1

� (�)

Z t

0

(t� s)��1
"
Q (s)u (s) + �1

R 1
0
w (s; �)G (u (�)) d�

+�2
R s
0
k (s; �)F (u (�) d�)

#
ds

(TuN) (t) = H (t)� t

� (�)

Z 1

0

(1� s)��1
"
Q (s)uN (s) + �1

R 1
0
w (s; �)G (uN (�)) d�

+�2
R s
0
k (s; �)F (uN (�)) d�

#
ds

+
1

� (�)

Z t

0

(t� s)��1
"
Q (s)uN (s) + �1

R 1
0
w (s; �)G (uN (�)) d�

+�2
R s
0
k (s; �)F (uN (�)) d�

#
ds

Using H1

jTuN (t)� Tu (t)j �
1

� (�)

Z 1

0

(1� s)��1 jQ (s)j juN (s)� u (s)j ds

+
L1
� (�)

Z 1

0

(1� s)��1
�Z 1

0

jw (s; �)j juN (�)� u (�)j d�
�
ds

+
L2
� (�)

Z 1

0

(1� s)��1
�Z s

0

jk (s; �)j juN (�)� u (�)j d�
�
ds

+
1

� (�)

Z t

0

(t� s)��1 jQ (s)j juN (s)� u (s)j ds

+
L1
� (�)

Z 1

0

(1� s)��1
�Z 1

0

jw (s; �)j juN (�)� u (�)j d�
�

+
L2
� (�)

Z t

0

(t� s)��1
�Z s

0

jk (s; �)j juN (�)� u (�)j d�
�
ds
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sup
x2[0;1]

jTuN (t)� Tu (t)j

� 1

� (�)

Z 1

0

(1� s)��1 sup
x2[0;1]

jQ (s)j sup
x2[0;1]

juN (s)� u (s)j ds

+
L1
� (�)

Z 1

0

(1� s)��1
"
sup
x2[0;1]

Z 1

0

jw (s; �)j sup
x2[0;1]

juN (�)� u (�)j d�
#
ds

+
L2
� (�)

Z 1

0

(1� s)��1
"
sup
x2[0;1]

Z s

0

jk (s; �)j sup
x2[0;1]

juN (�)� u (�)j d�
#
ds

+
1

� (�)

Z t

0

(t� s)��1 sup
x2[0;1]

jQ (s)j sup
x2[0;1]

juN (s)� u (s)j ds

+
L1
� (�)

Z 1

0

(1� s)��1
"
sup
x2[0;1]

Z 1

0

jw (s; �)j sup
x2[0;1]

juN (�)� u (�)j d�
#

+
L2
� (�)

Z t

0

(t� s)��1
"
sup
x2[0;1]

Z s

0

jk (s; �)j sup
x2[0;1]

juN (�)� u (�)j d�
#
ds

Using H2 and H3

kTuN � Tuk1 �
Q� + L1w

� + L2k
�

� (�+ 1)
kuN � uk1

as N !1; uN ! u

kTuN � Tuk1 ! 0

which implies that T is continuous on C ([0; 1] ;R)

5. CONVERGENCE OF THE METHOD

Theorem 5.7: Let (X; k:k) be a norm space, u (t) and uN (t) be the exact and approximated

solution of (1) and (2) respectively, then

kuN � uk1 �
kH �HNk1 + kuNk1 kQN �Qk1
� (�+ 1)�Q� � L1w� � L2k�

Proof. Let uN (t) and u (t) be the numerical and exact solution of (1) and (2) respectively, let
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Q (s) and H (t) in (9) be expanded in shifted Legendre polynomial, then

juN (t)� u (t)j � jHN (t)�H (t)j

+
1

� (�)

Z 1

0

(1� s)��1
"
juN (s)j kQN (s)�Q (s)k
+ jQ (s)j kuN (s)� u (s)k

#
ds

+
L1
� (�)

Z 1

0

(1� s)��1
�Z 1

0

jw (s; �)j kuN (�)� u (�)k d�
�
ds

+
L2
� (�)

Z 1

0

(1� s)��1
�Z s

0

jk (s; �)j kuN (�)� u (�)k d�
�
ds

+
1

� (�)

Z t

0

(t� s)��1
"
juN (s)j kQN (s)�Q (s)k
+ jQ (s)j kuN (s)� u (s)k

#
ds

+
L1
� (�)

Z t

0

(t� s)��1
�Z 1

0

jw (s; �)j kuN (�)� u (�)k d�
�
ds

+
L2
� (�)

Z t

0

(t� s)��1
�Z s

0

jk (s; �)j kuN (�)� u (�)k d�
�
ds

kuN � uk1 � kH �HNk1 +
kuNk1
� (�)

kQN �Qk1
Z 1

0

(1� s)��1 ds

+
kQk1
� (�)

kuN � uk1
Z 1

0

(1� s)��1 ds

+
L

� (�)
k� kuN � uk1

Z 1

0

(1� s)��1 ds

+
kuNk1
� (�)

kQN �Qk1
Z t

0

(t� s)��1 ds

+
kQk1
� (�)

kuN � uk1
Z t

0

(t� s)��1 ds

+
L

� (�)
k� kuN � uk1

Z t

0

(t� s)��1 ds

2664
kuN � uk1 � kH �HNk1 +

kuNk1
�(�+1)

kQN �Qk1
+
Q�kuN�uk1
�(�+1)

+
L1w�kuN�uk1

�(�+1)
+

L2k�kuN�uk1
�(�+1)

+
kuNk1kQN�Qk1

�(�+1)

+
Q�kuN�uk1
�(�+1)

+
L1w�kuN�uk1

�(�+1)
+

L2k�kuN�uk1
�(�+1)

3775
kuN � uk1 �

kH �HNk1 + kuNk1 kQN �Qk1
� (�+ 1)�Q� � L1w� � L2k�

6. NUMERICAL EXAMPLES

Example 6.1: [16] considered the boundary value problem

D1:2u (t) =
2:5

�(0:8)
t0:8 � t9

252
+

Z x

0

(t� s)2u3(s)ds; 0 � x � 1 (20)

10



u (0) = 0; u (1) = 0; exact solution u (t) = t2:

Solution 6.1: The approximate solution of (20) at N = 6 gives

u6 (t) =

 
�9:67535422e�18t6 + 2:113910062e�17t5 � 1:818434489e�17t4

+7:515340801e�18t3 + t2 � 1:184980209e�16t

!

Table 1: Comparison of absolute error for Example 6.1

t Exact [16] Present Method

0 0:00 2:13� 10�18 1:43� 10�20

0:1 0:01 1:83� 10�19 2:61� 10�20

0:2 0:04 6:43� 10�18 1:12� 10�21

0:3 0:09 3:39� 10�20 1:93� 10�21

0:4 0:16 3:93� 10�18 4:63� 10�21

0:5 0:25 4:54� 10�18 1:67� 10�22

0:6 0:36 5:12� 10�19 3:25� 10�22

0:7 0:49 6:24� 10�18 2:11� 10�21

0:8 0:64 8:30� 10�19 3:50� 10�22

0:9 0:81 1:30� 10�19 1:19� 10�22

1 1 1:45� 10�19 1:85� 10�22

Example 6.2: [10] considered the boundary value problem

D
3
2y (x) + y (x) = x5 � x4 + 128

7
p
�
x3:5 � 64

5
p
�
x2:5 (21)

subject to the boundary condition y (0) = 0; y (1) = 1:The exact solution is y (x) = x4 (x� 1)
Solution 6.2: The approximate solution of (21) at N = 9 gives

y9 (x) =

0B@ 1:189344416e�18x9 � 6:180191572e�18x8 + 1:402311643e�17x7

�1:838130491e�17x6 + x5 � 1:0x4 + 6:393568195e�18x3

+7:460356011e�19x2 � 1:247726439e�17x

1CA
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Table 2: Comparison of absolute error for Example 6.2

x Exact Present Method

0 0:00 2:53� 10�17

0:1 �0:000 09 3:55� 10�17

0:2 �0:001 28 3:89� 10�17

0:3 �0:005 67 1:19� 10�18

0:4 �0:015 36 2:14� 10�18

0:5 �0:031 25 3:96� 10�18

0:6 �0:051 84 1:35� 10�17

0:7 �0:072 03 5:01� 10�18

0:8 �0:081 92 8:05� 10�19

0:9 �0:065 61 4:22� 10�19

1 0:00 2:44� 10�19

Example 6.3: [19] considered the boundary value problem for a class of fractional di¤erential
equation

D�y (x) + ay (x) = g (x) ; 1 � x � 2 (22)

y (0) = 0; y (1) = � 1
40
; � =

3

2
; a =

e�3�p
�

g (x) =
e�3�p
�

�
x2
�
40x2 � 74x+ 33

�
+ 4e3�

p
x
�
128x2 � 148x+ 33

��
The exact solution

y (x) =

�
x2 � 37

20
x+

33

40

�
x2

Solution 6.3: The approximate solution of (22) at N = 4, 6 and 8 gives

y4 (x) = x
4 � 1:85x3 + 0:825x2 � 3:066883897e� 16x

y6 (x) =

 
�4:293620945e� 23x6 + 8:08021702e� 22x5

+x4 � 1:85x3 + 0:825x2 � 3:066883234e� 16x

!

y8 (x) =

0B@ �6:772990005e� 22x8 + 3:14953473e� 21x7

�6:066384787e� 21x6 + 6:916096771e� 21x5

+x4 � 1:85x3 + 0:825x2 � 3:066883108e� 16x

1CA
It is clearly shows from the examples presented that the present method can be considered as

an e¢ cient method.

7. CONCLUSION

In this paper, the collocation method is used to solve Factional order integro di¤erential

equations with dirichlet boundary condition using shifted legendre polynomial. From the results

obtained, it shows that the new method is e¢ cient and suitable for this kinds of problems.

MATLAB was used to implement the algorithm of the method.
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