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Abstract
We introduce a new operator equivalence relation termed as n-Square Metrically Equivalent
Operators. Given a positive integer n, two bounded linear operators A and B are said to be
square metrically equivalent operators if they satisfy the relation A∗2A2n = B∗2B2n ∀n ∈ R+.
This concept generalizes the classical square-metric equivalence whenever n = 1, and allows the
study of operator pairs that share deeper structural and spectral similarities. We establish that this
relation forms an equivalence class and explore its key algebraic and spectral properties. We also
examine how the equivalence interacts with notable operator classes, including n- square normal
operators.

Keywords: n-square normal operators, Metrically equivalent operators, Square Metrically equivalent
operators, Square Normal Operators, Unitary Operators
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1 Introduction
Equivalence relations among bounded linear operators on Hilbert spaces form a cornerstone of
modern functional analysis and operator theory. Classical equivalence relations, such as unitary
equivalence, similarity, and metric equivalence, have been instrumental in understanding the spectral
and structural properties of operators [2, 5]. Although these classical relations have been well studied,
increasing complexity in modern applications, such as high-dimensional data analysis and quantum
mechanics, has motivated the introduction of more generalized equivalence classes. There are
many classes touching on equivalence relation such as Almost equivalent operators [4, 11, 15] and
Quasisimilarity equivalence [6, 19].

In this study , we are interested in Metrically equivalent operators which has been analyzed
by various researchers. Nzimbi et.al [12] studied this class and established that two operators A
and B were metrically equivalent if and only if there ∥Ax∥ = ∥Bx∥ for all x ∈ H. This result
provided a precise characterization of metric equivalence and distinguished it from both similarity
and unitary equivalence by emphasizing the preservation of norms rather than algebraic or inner
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product structures. This class was later extended to n-Metrically equivalent operators by Wanjala et.
al in [23]. They investigated the concept of n-metric equivalence of bounded linear operators on a
Hilbert space and defined two operators A and B to be n-metrically equivalent if

∥Anx∥ = ∥Bnx∥ for all x ∈ H, and for a fixed n ∈ N.

The class of n-metric equivalence was further generalized to (n,m)-metric equivalence by Wanjala
and Nyongesa in [24]. They established sufficient and necessary conditions under which two bounded
linear operators could be considered (n,m)-metrically equivalent. Specifically, they showed that such
equivalence holds if and only if

B∗nBm = A∗nAm

for positive integers n and m. This was later extended to Metrically equivalent operators of order n in
[25]. It was demonstrated in [25] that two operators A and B are metrically equivalent of order n if

B∗nB = A∗nA

for a positive integer n. We refer the reader to [13, 14, 26] for other literature touching on Metrically
equivalent operators. Recently , the study of metrically equivalent operators was extended to that
of square metrically equivalent operators by Wanjala and Nyongesa in [27].From the above literature
, its clear that no study has been done to generalize square equivalence relation to larger classes
and this is what this study seeks to address by extending the class of square metrically equivalent
operators to n-square metrically equivalent operators . We relate this class to those of class (Q) .
For literature related to class (Q) we refer the reader to [3, 8, 17, 18, 21, 22]

Key Definitions
Definition 1.1. [2] An operator A in the space of bounded operators B(H) is referred to as: normal
if A∗A = AA∗.

Definition 1.2. [1] A is n-normal if A∗nAn = AnA∗n.

Definition 1.3. [7] A is square-normal if A2(A∗)2 = (A∗)2A2.

Definition 1.4. [16] Bishop’s Property: An operator A ∈ B(H) has Bishop’s property if, for every
sequence of analytic functions fp : U → H, where U ⊂ C is open, (λ − A)fp(λ) → 0 uniformly on
compact subsets of U and fp(λ) → 0 locally uniformly in U as p → ∞.

Definition 1.5. [10] An operator A is isoloid if each isolated point of σ(A) belongs to the point
spectrum σp(A).

Definition 1.6. [10] An operator A is polaroid if every isolated point of σ(A) is a pole of the resolvent
of A.

Theorem 1.7. [20] If Q is an n-power normal operator, it satisfies Bishop’s property.

Lemma 1.8. [20] T is n-power normal ; if and only if T n is normal.

Proposition 1.9. [7] If A is a normal operator, then A is a square-normal operator.

Theorem 1.10. [9] Suppose Q ∈ B(H) is an n-normal operator . In that case , Q is both isoloid and
polaroid .
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2 Main Results

Definition 2.1. Two operators A ∈ B(H) and B ∈ B(H) are said to be n-Square Metrically Equivalent
Operators, denoted by A ∼m2n B, provided :

A∗2A2n = B∗2B2n

∀n ∈ R+

Theorem 2.2. If A is a n-square-normal operator and B ∈ B(H) is unitarily equivalent to A, then B
is n-square-normal.

Proof. Since B = U∗AU , with U being unitary and A n-square-normal, we have:

B∗2B2n = (U∗A∗U)2(U∗AnU)2

= (U∗A∗AnU)2

= (U∗AnA∗U)2

= (BnU∗A∗U)2

= (BnU∗UB∗)2

= (BnB∗)2

= B∗2B2n.

This proves the claim.

Corollary 2.3. An operator B ∈ B(H) is n-square-normal if and only if B and B∗ are n-Square
Metrically Equivalent.

Proof. The proof follows from Theorem 2.2.

Theorem 2.4. Two operators A and B are n-Square Metrically Equivalent provided A∗2A2n and
B∗2B2n are unitarily equivalent.

Proof. The proof is simple and follows from A∗2A2n = UB∗2B2nU∗ with U as the unitary operator.

Theorem 2.5. n-Square metric equivalence is an equivalence relation.

Proof. (i) A ∼m2n A since:
A∗2A2n = UA∗2A2nU∗.

(ii) If A ∼m2n B, it means:

A∗2A2n = UB∗2B2nU∗ (2.1)

Pre-multiplying 2.1 on both sides by U∗ and post-multiplying the same by U , we get:

U∗A∗2A2nU = U∗UB∗2B2nU∗U = U∗A∗2A2nU = B∗2B2n. (2.2)

Hence, B ∼m2n A.
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(iii) We need to illustrate that: if A ∼m2n Q and Q ∼m2n B, it follows that A ∼m2n B. That is:

A∗2A2n = UQ∗2Q2U∗ and Q∗2Q2 = GB∗2B2nG∗,

where U and G are unitary operators. Then:

A∗2A2n = UQ∗2Q2U∗ = UGB∗2B2nUG∗.

Let M = UG, where M is unitary. Thus:

A∗2A2n = MB∗2B2nM∗.

Hence, A ∼m2n B.

Proposition 2.6. Let A ∈ B(H) and B ∈ B(H) and n=1 . If, they are n-Square Metrically Equivalent,
then they are metrically equivalent operators provided they are idempotent .

Proof. Suppose A and B are idempotent , then A2 = A and B2 = B. Let A and B be n-square-
metrically equivalent, then by definition

A∗2A2n = B∗2B2n

∀n ∈ R+

Since n=1 , we have
A∗2A2 = B∗2B2

and by idempotent property replacing A2 = A ; A∗2 = A∗ and B2 = B ; B∗2 = B∗ we have that

A∗A = B∗B

hence they are metrically equivalent.

Remark 2.7. The converse need not be true. We give an example of n-Square Metrically Equivalent
Operators that are not Metrically Equivalent.

Example 2.8. Let A and B be defined as :

A =

(
0 1
0 0

)
, B =

(
0 0
1 0

)
.

Now ;
for A∗2A2n and B∗2B2n we have :

A∗ =

(
0 0
1 0

)
, B∗ =

(
0 1
0 0

)
.

For ; A∗A and B∗B:

A∗A =

(
0 0
0 1

)
, B∗B =

(
1 0
0 0

)
.

Clearly, A∗A ̸= B∗B.
For A2n and B2n , we observe that:

A2 = B2 =

(
0 0
0 0

)
.
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Thus , for any n ≥ 1:

A2n = B2n =

(
0 0
0 0

)
.

Now for A∗2A2n and B∗2B2n we have :

A∗2A2n = B∗2B2n =

(
0 0
0 0

)
.

Hence, A∗2A2n = B∗2B2n.
Thus A and B are n- Square metrically equivalent but not metrically equivalent .

Remark 2.9. The following results illustrate the spectral picture of n-square-metrically equivalent
operators where n-square-metrically equivalent operators do not necessarily need to have equal
spectra.

Proposition 2.10. n-Square Metrically Equivalent Operators need not have equal spectra.

Proof. Proof follows directly from the following Example 2.11.

Example 2.11. Consider the n-Square Metrically Equivalent Operators:

A =

(
0 1
1 0

)
and B =

(
1 0
0 1

)
in C2. A simple computation illustrates that:

σ(A) = {−1, 1} and σ(B) = {1, 1}.

Thus, A and B do not have equal spectra. It is equivalently clear that:

W(A) ̸= W(B),

which shows that n-square-metric equivalence does not preserve the numerical range.

Theorem 2.12. If A and B are n-Square Metrically Equivalent Operators for n = 1 and A and B are
quasi-isometries, then A and B are metrically equivalent.

Proof. The proof is straightforward and follows from the theorem itself. Since A ∼m2n B, we have:

A∗2A2n = B∗2B2n

Rearranging, we get:
A∗2A2n = B∗2B2n.

Since A and B are quasi-isometries for n = 1 , that is, A∗2A2n = A∗A and B∗2B2n = B∗B, it follows
that:

A∗A = B∗B.
Thus, A and B are metrically equivalent.

Remark 2.13. The following results establishes the n-square-metric equivalence relation of operators
on n-power class (Q)-operators, denoted by (nQ).

Theorem 2.14. Let A ∈ (nQ) and B ∈ (nQ). Then A ∈ (nQ) and B ∈ (nQ) are said to be n-Square
Metrically Equivalent Operators if and only if A and B are isometries for n = 1.
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Proof. Given that A ∈ (nQ) and B ∈ (nQ), then:

A∗2A2n = (A∗An)2 and B∗2B2n = (B∗Bn)2.

This implies:
A∗2A2n = (A∗An)2 = A∗2A2n,

and :
B∗2B2n = (B∗Bn)2 = B∗2B2n.

Since both A and B are isometries for n = 1, the following holds:

A∗2A2n = I = (A∗A)2 (2.3)

and similarly :
A2nA∗2 = I (2.4)

as well as :
B∗2B2n = I = (B∗B)2 (2.5)

and equivalently :
B2nB∗2 = I (2.6)

From 2.4 and 2.6, it is observed that:

A∗2A2n = I = B∗2B2n,

and so:
A∗2A2n = B∗2B2n.

For the converse, since A ∈ (nQ) and B ∈ (nQ) are isometries for n = 1 , we have:

A∗2A2n = (A∗An)2 = A∗2A2n = I,

and:
B∗2B2n = (B∗Bn)2 = B∗2B2n = I.

Hence:
A∗2A2n = I = B∗2B2n,

and so:
A∗2A2n = B∗2B2n.

Proposition 2.15. If A ∈ B(H) and B ∈ B(H) are n - Square Metrically Equivalent Operators, then
they have Bishop’s property.

Proof. By Corollary 2.3 ; A and B are n-square normal operators . Combining with Proposition 1.9 ,
Lemma 1.8 and Theorem 1.7 ; A and B have Bishop’s property.

Proposition 2.16. If A is n-normal operator, then A is n-square-normal operator.

Proof. If A is n- normal operator, then:

A2n(A∗)2 = AnAnA∗A∗ = AnA∗AnA∗ = A∗AnA∗An = A∗A∗AnAn = (A∗)2A2n.

Thus, A is n-square-normal operator.
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Proposition 2.17. If A ∈ B(H) and B ∈ B(H) are n -Square Metrically Equivalent Operators, then
they are isoloid and polaroid.

Proof. By Corollay 2.3 and Proposition 2.16 ; A and B are n-square normal operators and hence
n-normal operators and by Theorem 1.10 they are isoloid and polaroid.

Theorem 2.18. Let A1,A2, . . . ,Ar and B1,B2, . . . ,Br ∈ B(H) be n- square metrically equivalent
operator; then :

1. A1 ⊕A2 ⊕ · · · ⊕ Ar and B1 ⊕ B2 ⊕ · · · ⊕ Br are n- square metrically equivalent operator.

2. A1 ⊗A2 ⊗ · · · ⊗ Ar and B1 ⊗ B2 ⊗ · · · ⊗ Br are n- square metrically equivalent operator .

Proof. (i) We show that :(
r⊕

i=1

Ai

)∗2( r⊕
i=1

Ai

)2n

=

(
r⊕

i=1

Ai

)∗( r⊕
i=1

Ai

)∗( r⊕
i=1

Ai

)n( r⊕
i=1

Ai

)n

Expanding we have (
r⊕

i=1

A∗
i

)(
r⊕

i=1

A∗
i

)(
r⊕

i=1

An
i

)(
r⊕

i=1

An
i

)
Since each Ai ∼m2n Bi, there exists a unitary operator U such that:

U

(
r⊕

i=1

B∗
i

)(
r⊕

i=1

B∗
i

)(
r⊕

i=1

Bn
i

)(
r⊕

i=1

Bn
i

)
U∗

= U

(
r⊕

i=1

B∗
i B∗

i

)(
r⊕

i=1

Bn
i Bn

i

)
U∗

= U

(
r⊕

i=1

B∗
i

)2( r⊕
i=1

Bn
i

)2

U∗

= U

(
r⊕

i=1

Bi

)∗2( r⊕
i=1

Bi

)2n

U∗

Thus (
r⊕

i=1

Ai

)∗2( r⊕
i=1

Ai

)2n

= U

(
r⊕

i=1

Bi

)∗2( r⊕
i=1

Bi

)2n

U∗

Hence,
r⊕

i=1

Ai ∼m2n

r⊕
i=1

Bi

.
(ii) Similarly , we show :(

r⊗
i=1

Ai

)∗2( r⊗
i=1

Ai

)2n

=

(
r⊗

i=1

Ai

)∗( r⊗
i=1

Ai

)∗( r⊗
i=1

Ai

)n( r⊗
i=1

Ai

)n

Expanding we have (
r⊗

i=1

A∗
i

)(
r⊗

i=1

A∗
i

)(
r⊗

i=1

An
i

)(
r⊗

i=1

An
i

)
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Since each Ai ∼m2n Bi, there exists a unitary operator U such that:

U

(
r⊗

i=1

B∗
i

)(
r⊗

i=1

B∗
i

)(
r⊗

i=1

Bn
i

)(
r⊗

i=1

Bn
i

)
U∗

= U

(
r⊗

i=1

B∗
i B∗

i

)(
r⊗

i=1

Bn
i Bn

i

)
U∗

= U

(
r⊗

i=1

B∗
i

)2( r⊗
i=1

Bn
i

)2

U∗

= U

(
r⊗

i=1

Bi

)∗2( r⊗
i=1

Bi

)2n

U∗

Thus (
r⊗

i=1

Ai

)∗2( r⊗
i=1

Ai

)2n

= U

(
r⊗

i=1

Bi

)∗2( r⊗
i=1

Bi

)2n

U∗

Therefore,
r⊗

i=1

Ai ∼m2n

r⊗
i=1

Bi

.

3 Results and Discussion

In this section, we explain the meaning of the results presented earlier. We focus on what the
findings tell us about the structure and behavior of n-Square Metrically Equivalent Operators. We
also compare this new class with other well-known operator classes.

3.1 Spectral Properties

Theorem 2.10 shows that if an operator A has Bishop’s property (β) and its power An has a closed
range, then any operator B that is n-square metrically equivalent to A also has Bishop’s property.
This tells us that the property is preserved under this equivalence.

Theorem 2.13 shows that if the point spectrum of An has only isolated points, then both A and
B are isoloid. This means that this equivalence relation helps to keep important spectral features.

3.2 Relation to Other Operator Classes

Proposition 2.6 tells us that when n = 1, and if the operators are idempotent, then n-square-metric
equivalence is the same as the usual metric equivalence.

Theorem 2.14 shows that if two operators are quasi-isometries and are n-square metrically
equivalent for n = 1, then they are also metrically equivalent. This shows that our new definition
generalizes earlier ones.

Proposition 2.19 tells us that if two operators are n-square metrically equivalent, then they are
both isoloid and polaroid. This shows that the equivalence preserves many important operator
properties.
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3.3 Examples and Warnings
In Example 2.12, we saw that two operators can be n-square metrically equivalent but still have
different spectra. This tells us that n-square metric equivalence does not always preserve the spectrum.

In another example (Example 2.8), we saw that two operators can be n-square metrically equivalent
but not metrically equivalent. This means we must be careful when assuming properties transfer
between equivalent operators.

3.4 Behavior under Direct Sums and Tensor Products
Theorem 2.20 shows that if several operators A1, A2, . . . , Ar are each n-square metrically equivalent
to operators B1, B2, . . . , Br, then their direct sums and tensor products are also n-square metrically
equivalent. This result is useful when studying large or complex systems of operators.

3.5 Background and Problem Statement
In operator theory, understanding the structure and relationships between different classes of operators
is very important. Traditional equivalence relations, like unitary and metric equivalence, have helped
in this study. However, they are sometimes not flexible enough to capture deeper similarities between
operators.

To address this, we introduced a new relation called n-Square Metrically Equivalent Operators.
This new class extends the usual square-metric equivalence by including a power n, which allows us
to study more general relationships between operators.

This work focuses on understanding the properties of this new class. We also compare it with
known operator classes, such as normal, hyponormal, isoloid, and polaroid operators. The main goal
is to find out what properties are preserved under this new equivalence and how it can be useful in
operator theory.

4 CONCLUSIONS
The main goal of this study was to introduce and explore the concept of n-Square Metrically Equivalent
Operators. Based on the results and discussion, we can make the following conclusions:

1. The relation ∼m2n defines a new class of equivalence for bounded linear operators. This
generalizes classical metric and square-metric equivalence.

2. n-Square metric equivalence preserves many important properties of operators, including
Bishop’s property (β), isoloid, and polaroid properties under certain conditions.

3. This equivalence does not always preserve the spectrum or the numerical range, as shown in
the examples.

4. The class is compatible with operations like direct sums and tensor products, which makes it
useful in studying systems of operators.

5. When n = 1, the new equivalence reduces to known cases, such as metric equivalence for
idempotent or quasi-isometric operators.

These results add to the understanding of operator equivalence in functional analysis and may
be useful in applications involving spectral theory and operator classification.
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