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ABSTRACT: The paper develops and implements a numerical method for solving fractional
order Fredholm Volterra integro differential equations with Dirichlet boundary conditions using
the shifted Legendre collocation method. The proposed method is formulated by first obtaining
the integral form of the given model equation, followed by applying the collocation technique
to generate a system of nonlinear equations. These nonlinear equations are then solved using
Newton-Raphson’s iterative method. The accuracy and efficiency of the developed method are
analyzed, demonstrating that the obtained solutions are continuous and exhibit convergence.
The uniqueness of the solution is established, further validating the reliability of the approach.
To assess the effectiveness of the method, several numerical examples are presented, comparing
the obtained results with existing techniques. The numerical experiments confirm that the
proposed approach yields highly accurate solutions while maintaining computational efficiency.
This study shows the applicability of the shifted Legendre collocation method in solving complex
integro-differential equations.
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1. INTRODUCTION

Fractional calculus have great importance in the field of Mathematics, Physics, Chemistry
and Engineering. Mathematical modeling of real life problems usually arises in functional
equations such as ordinary and partial differential equations. Many mathematical formulations
in physical phenomena contain Integro Differential Equations (IDEs), these equations appear in
modelling some phenomena in Science and Engineering. Examples include, the kinetic equations
which form the basis of the kinetic theory of rarefied gases, plasma, radiation transfer and
coagulation [6]. IDEs have been used to model heat and mass diffusion processes, biological
species coexistence together with increasing and decreasing rate of growth; electromagnetic
theory and ocean circulation [2].

IDE is an equation in which the unknown function y () appears under an integral sign and
contains ordinary derivatives [13]|. IDEs are usually difficult to solve analytically so it requires to
obtain an efficient approximate or numerical solution [15]. Recently, there has been a growing
interest in the area of fractional calculus; this is because fractional calculus provides more

accurate models of many engineering system than integer order derivatives and integrals [16].

Fractional derivatives are powerful and efficient tools to describe physical systems that have long

term memory, especially in modelling complex dynamic systems. The fractional derivative of
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order o > 0 has several definitions. Over the years, mathematicians, using their own notations
and approach, have found various definitions that fit the idea of a non-integer order integral
or derivative. One version that has been popularized in the world of fractional calculus is the
Riemann - Liouville definition. For the fractional derivative, the Caputo’s definition is mostly
used, which is a modification of the Riemann -Liouville definition; because it has the advantage
of dealing properly with initial value problems, since the initial condition is given in terms of
field variables and their integer order [9].

This paper considers the numerical solution of Fractional Order Integro Differential Equations

of the form
1 t
cDfu(t) =h(t)+Q (t)u(t) + M / w(t,s)G(u(s))ds+ )\2/ E(t,s) F(u(s))ds (1)
0 0
t € [0, 1] subject to the boundary conditions

w(0) = po, uw(l) =py (2)

where {Df (.) is the left Caputo derivative operator; h : [0,1] — R, @ : [0,1] — R, k :

[0,1] x [0,1] — R are continuous functions, F : [0, 1] x R — R is Lipschitzian continuous.

Most of the approaches for solving FOIDE are based on semi numerical methods such as
Adomian decomposition method, variation method, Dafter-Geji and Jafari method among
others. Recently, collocation methods have been receiving attention from different authors
which include [10] developed Bernolli pseudo spectral method, [11] developed a collocation
method for solving fractional order Ricatti differential equation, [3] solves linear and non-linear

Fredholm IDE using collocation method; [7] developed Taylor expansion method.

2. BASIC DEFINITIONS

Here, we recall some basic notion, lemmas and theorems which are used in the subsequent
sections.

Definition 2.1: g-contraction [4] Let (X, ||.||) be a normed space, the mapping 7' : X — X is
a g-contraction if ||T'z; — Txs|| < qllz1 — 22|, ¢ € [0,1) fixed for all 1,z € X
Definition 2.2: The left Caputo’s definition [17] The left Caputo’s definition of fractional

derivative operator is given by

1 t
¢ Do _ _ p\ym—a—1 g£(m)
wherem —1<a<m,meéeN,ae R,t>0.

It has the following two basic properties:

(i) DI*f (x) = f(x)
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(ii) I°Df (z) = f(x) = Y fE(07)%, 2 >0

k!
0

£
I

Definition 2.3: Strict contraction [4] Let (X, ||.||) be a norm space, T' : X — X is strict
contraction when

|T"zy — T"xs| < q" ||z — 22| for all z,y € X

Definition 2.4: Riemann-Liouville fractional integral [5] The Riemann-Liouville fractional

integral of order o > 0 of a continuous function u : (0,00) — R is defined by

1
olfu(t) = ) / (t — )" u(s)ds. (4)
0
Definition 2.5: Integration of nth derivative [5] For a > 0, let u (t) be a continuous function,
then )
oI} (D) (1) = u (1) = 3 et 5
k=0

Definition 2.6: [1] defined the Legendre polynomial on the interval [—1,1] and can be

determined with the aid of the recurrence formulae

2 1
nt xL, (x) — n
n+1 n+1

Loy (z) = L,y(z),n=1,2,--- (6)

where Lo (x) = 1, Ly () = . In order to use these polynomials on the interval = € [0, 1] , shifted

Legendre polynomial is then defined by the recurrence formula

(2n+1)(2n —1) n
nrn @i

Pns1 (7) = Pn1 (¥) (7)

where pg = 1, p; (x) = 22 — 1. The analytical form of degree n is defined as

n

- ()" T(n+k+1)
=S L

k=0

3. METHODOLOGY

This section considers the development of our method, which was achieved by developing the
integral form of (1) and (2) and the algebraic equations using some lemmas.
Lemma 3.1: (Integral form) Let u (t) € C ([0,1],R) be the solution to (1) and (2), then it is
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equivalent to

. () (s)
w(t) = H(t)—m/o (=5 | o [l T)G( () dr | ds
+a [y k(s,7) F (u(r)dr)
. Q(S)U(S)
+—/ (t —s)*" +)\1f01w(8,T)G(U(T))dT ds
[ (a) Jo s
+ Ao fo k(s,7) F (u(7)dr)

where

H<t>=<1—t>u0+wl—ﬁ/0 <1—s>a-1h<s>ds+ﬁ/0 (t— 5)* "V (s) ds

Proof. Let

y(t)=h(t)+Q(t)u(t) —1—)\1/0 w(t,s)G(u(s))ds—i-/\g/U k(t,s) F (u(s))ds
hence (1) gives
oDiu(t) =y (t)

multiply (10) by o/}
ol{6Dfu (t) = ofi'y (1)

and using (5) for 0 < o < 2
1

u(t) =Y et* = oIy (t)

k=0
thus
u (t) =co+ct+ oftay (t)

considering the boundary conditions u (0) = p,
u(0) = po = co = g
considering the boundary conditions u (1) = p,
u(l)=co+c1+ oliy (1)

C1 = H1 — Mo — offy(l)

substituting the values of ¢y and ¢; in (11)
u(t) = po+ (= po = oy (1) t+ off'y (¢)

u(t) = (1 =t) po+tm —toliy (1) + offy (t)
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h(t)+Q ) u(t)+ M [} w(t,s)G (uls))ds >
Ao fg (t,s) F (u(s))ds

+01ta< (t) + Q) u(t) + )‘1f0 (S))d8>
(u ())ds

u(t) = (1_t)ﬂo+tﬂ1_t0[f<

o fo k(t,s) F
using (4)
- <>+@<s>u<s>
ult) = (1—t>uo+w1—m/<1—s>“ o flw ) (u(r)dr | ds
0 BN F(u(r))dr
hs)+Q(s)u(s)

+ — / (t=s)"" | 4\ [y w(s,7)G(u(r))dr | ds
0 4+ fosk(s,T)F(u (1)) dr

B ot 1 et Q (s)u(s) +)\1f0 (s,7) G (u(r))dr )

u ) H) F(O‘)/O a ) [ —l—)xzfo F(u(r)dr) ]d
L[| @O +A1fo > (w(r)dr |
+F(Oé)/o<t ) l +>\2f0 o7 (() ) ]d

which is the required result. m
Theorem 3.2: (Banach Contraction Principle) Let (X, |.||) be a complete norm space, then

each contraction mapping 7' : X — X has a unique fixed point x of 7" in X, such that Tz =z
3.1 Method of Solution
Let the solution of (1) and (2) be approximated by

un (t) =p(t) A (12)

where uy (t) is the approximate solution, p(t) = [ po(t) pr(t) -+ pn(t) ], pn (1) is the
T

shifted Legendre polynomial defined by (8) and A = [ ag ap -+ an ] are constants to be

determined.
u(t) € C([0,1],R) defined in (12) can be written in the form

uy (t) = T(t) MA (13)
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where
[ M (0,0) 0 0 .- o 1"
M(1,0) M (1,1) 0o .- 0
T =1+ .. tN],M: M(2,0) M(2,1) M(22) - 0
_M(N,O) M(N,l) M(N,z) M(N,N)_
M (n, k) = ()" P (n+k+1) n>0,M(0,0) =1 (14)

I'(n—k+1)(T(k+1))°
substituting (13) into (9) and collocating at t;, i = 0(1) N, N € Z*

T(t;) MA—H (t;) + l /1 (1—s)""| +\ fol w(s,7) G(T (1) MA)dr | ds

—— /ti (ti— )" | +n fol w(s,7) G(T (1) MA)dr | ds= (15)
° )

H(ti)=(1_ti)u0+tiul—%/o (1—3)a1h(s)ds+ﬁ/oi(ti—s)“lh(s)ds

which is a (N 4+ 1) x (N + 1) nonlinear equations. We solved for A in (15) and substituted the

result into (13) to obtain the numerical solution.

Proposition 3.3: If u (x) = [ 1z 2% - oV ] , then it is equivalent to u (z,n) = 2™, n =
0(1)N,n € Z*
Proof. Given u (z) = [ 1 o 2% - 2V } then

u(x) =u(x,n)=2"n=0(1)N

u
Lemma 3.4: Let h € C ([0,1],R), be defined as h (s) = s™,if

1 -
vy (t) = m/o (t—s)"""h(s)ds (16)
then v; (¢) is equivalent to
0 () = o e (1)
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moreover, if

v (t) = ﬁ /O (1= )2V (s) ds (18)
then vy (t) is equivalent to - X
v (£) = r(a(T—;ﬁm (19)

Proof. substituting i (s) = s into (16), the desired result is obtained

. _ F <m + 1) a+m
A S P )

4. UNIQUENESS OF THE METHOD

Here, we assumed that the solution to equation (1) and (2) exist, we then establish the
uniqueness of the method of solution.
H; : There exist two constants, L; and Ly > 0, such that for any uy and v € C ([0, 1], R)

|G (t,uy) — G (t,u)| < Ly |uy — u|

and
|F (t,un) — F (t,u)] < Lo |uny — ul

H, : There exist two functions £* and w* € C ([0, 1] x [0, 1], R), the set of all positive functions
such that

= sup/|k (x,t)]dt < o0

z€(0,1

and
w* = sup/ lw (z,t)| dt < o0
z€[0,1]
Hs:Q e C([0,1],R)
Q" = sup |Q(s)l

z€[0,1]

(Uniqueness of solution)

Theorem 4.5: Let (X, ||.||) be a complete norm space and T : C' ([0, 1],R) — C ([0,1] ,R) be

a strict g-contraction,then

(i) T has a unique fixed point, that is Fr = {z,} -,
(ii) The Picard iteration associated to T', that is {x,, } .., defined by w,, = T (tn41) = T" (un) ,n =
T"u,, n=1,2,--- converges to x" for any initial guess xg € X

Proof. Since T is a contraction and 7" : C ([0,1],R) — C ([0, 1],R) is a Banach space. Using
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the contraction principle, it shows there exist a uniue solution of 7' m

Lemma 4.6: (Continuity) Let T': C ([0,1] ,R) — C([0,1],R) be a mapping defined by (12),
Let u(t) € C([0,1],R) be a solution of (1) and (2) and C (][0,1],R) a Banach space. If
limy oo un () = u(x), then T is continuous on C ([0, 1],R) if || Tun (t) — Tu(t)||,, — O as
N — o0

Proof. Using Banach contraction principle

B ot et Q(s)u(s)+ A [y w(s,7)G (u(r))dr )

Tw® = HO =51 /0 (=) [ o [k (s,7) F (u(7) dr) ]d
1 t et Q(S)u(s)+)\1f01w(s,T)G(u(7'))dT .

trga ), €9 [ g fi (5,7 F (u (7)) ]d

¢ /01(1_3)“—1[Q(8) +/\1f0 )G(UN())dT]dS

[ (e) +A2 [o K Fuy (7)) d
Q@ +A1f0 > (v ()dr |
+Fa)/0(t ) [ +>\2f0 ( (7)) dr ]d
Using H,
[Tuy (t) = Tu(t)] < ﬁ/{) (1= 9)*71Q (s)| |un (s) — u(s)| ds

+FL(;)/011_5 [/ VWSTHUN()—U()!dT]

*rL@)/Ol(l—s U [k smHuNm—u(T)\dT} ds
bt [ =9 1@y () wls) ds

+FL(;) /01 (1=s)"" UO |w<577—>’|UN(7')—U(T)’dT}
*rLé@ / (t=9)"" { / "k (s, 7)) (7) — w (1) dT] ds
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sup |Tuy (t) — Tu (t)|
z€(0,1]

1 ! a—1
e [ = s (@0 s o ()= (o)

:136[0 1] z€[0,1]

IN

Ly 1 o1
+r<a>/o (=) S“p/ [w(s,7)| sup IuN<T>—u<r>|dT] ds

:L“E[O 1] z€[0,1]

L, (! a—1
+m/0 (1—2s) sup / |k (s,7)| sup |uy (T)—U(T)|d7'] ds

| z€(0,1] me [0,1]

1 ¢ a—1
i [ = s (0 s e () ()

z€[0,1] z€[0,1]

Ly /1
+ (1—5)"""| sup / lw (s,7)| sup |un (T) —u(7T)|dr
I () Jo Le[o 1] a:e[o,l]

L t
—I——2/ (t—s)*" | sup / |k (s,7)| sup |uy (1) —w(7)|dr| ds
' () Jo z€0,1] x€[0,1]

Using Hy and Hj

Q* —f- Llw* —|— Lgk*
I'(a+1)

[Tun = Tull . < lun = ull

as N — oo, uy — u
| Tuny —Tul, — 0

which implies that 7" is continuous on C ([0,1] ,R) =

5. CONVERGENCE OF THE METHOD

Theorem 5.7: Let (X |.||) be a norm space, u (t) and uy () be the exact and approximated
solution of (1) and (2) respectively, then

[1H = Hyllo + [unlo [Qn = @l

“uN_U’HOO - T'(a+1)— Q" — Lyw* — Lok*

Proof. Let uy (t) and u (t) be the numerical and exact solution of (1) and (2) respectively, let
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Q (s) and H () in (9) be expanded in shifted Legendre polynomial, then

uy (t) —u (@) < |Hy (t) = H ()]

L e[ Gllere-eel ],
e ), 49 _+|@<s>|uuN<s>—u<s>||]

iz /01 (1— 5o :/01|w(s,7)|||uN(T)—u(T)||dT} ds

o)
trs [ [ Wi ) - el ar]
st 0 it |

ros [ [ [ ol () = wl ) s
ros [t [ [ ) = uel ar) s

[[un]] /1 a1
— < |H-H = — 1— d
lun —ullo < | Moo + Ty 108 = Qlls [ (1= 9)" " ds
Q|
a

H /1 a—1
+—= |Jun — ul| o, 1—s ds

= = /1(1—s)a_1ds
I'(a) N > Jo

Juxl e
HE oy =@l [ (-5 ds

—l—% |lun — uHOO/O (t—s)*"ds

L % ! a—1
+——k" |lun —u| [ (t—s)" " ds
@ 0

lun — ull, < [|H = Hy |l + 5295 1Qn — Qll.,

Qllun—ulloe | Liw*llun—ull | Lok*llun—ulle | [lunllollQn—CQllo
+ T'(a+1) + I'(a+1) + I'(a+1) + I'(a+1)
Qluv—ullee | Inw*llun—ully, | Lok*|luy—ull
T T o T T e T T T

17 = Hylloo + lunllo [@n = @l
I'(a+1) — Q" — Lyw* — Lok*

lun = ull, <

6. NUMERICAL EXAMPLES

Example 6.1: [12] considered the boundary value problem

2.5 t? ’
08 _ 353 +/ (t—s)u’(s)ds,0 <z <1
0

D*ut) = T(0.8) 25

10
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u (0) = 0,u (1) = 0, exact solution u (t) = 2.
Solution 6.1: The approximate solution of (20) at N = 6 gives

+7.515340801e 183 + 2 — 1.184980209¢'6¢

(t) ( —9.67535422¢ 846 + 2.113910062¢~17¢5 — 1.818434489¢ 17t )
Ug =

Table 1: Comparison of absolute error for Example 6.1

t  Exact [12] Present Method
0 0.00 2.13x 10718 1.43 x 1072
0.1 0.01 1.83x107" 2.61x107*°
0.2 0.04 6.43 x 10718 1.12 x 1072
0.3 0.09 3.39 x 1072%  1.93 x 10~%
04 016 393x107" 4.63x107*
0.5 0.25 454 x 10718 1.67 x 1072
0.6 0.36 5.12 x 10719 3.25 x 10722
0.7 0.49 6.24 x 10718 211 x 107
0.8 0.64 8.30 x 1071 3.50 x 10722
0.9 0.81 1.30 x 1071 1.19 x 1072
1 1 1.45 x 1071 1.85 x 10722

Example 6.2: [8] considered the boundary value problem

D%y($)+y(x):x5—x4+

128 64
235 _ 2.5

N 5y

(21)

subject to the boundary condition 3 (0) = 0,7 (1) = 1.The exact solution is y () = z* (z — 1)

Solution 6.2: The approximate solution of (21) at N = 9 gives

1.189344416e 82 — 6.180191572¢ 828 + 1.402311643¢ 1727

Yo (z) = —1.838130491e 1746 4 2° —

1.0z* 4 6.393568195¢ 1823

+7.460356011e 1922 — 1.247726439¢ 7

11
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Table 2: Comparison of absolute error for Example 6.2

T Exact Present Method
0  0.00 2.53 x 10717
0.1 —0.00009 3.55x 10717
0.2 —0.00128 3.89 x 10717
0.3 —0.00567 1.19 x 1078
0.4 —0.01536 2.14 x 107'8
0.5 —0.03125 3.96 x 1078
0.6 —0.05184 1.35x 10717
0.7 —0.07203 5.01 x 107'8
0.8 —0.08192 8.05x 1071
0.9 —0.06561 4.22x 1071
1 0.00 2.44 x 1071

Example 6.3: [14] considered the boundary value problem for a class of fractional differential

equation
Dy (x) +ay(z) =g(x),1 <z <2 (22)
1 3 e 3T
Yy ( ) Y ( ) 40° a 9’ a ﬁ
—37
g(x) =" = (22 (402 — T4a + 33) + 4¢°™/7 (12827 — 148 + 33))
T
The exact solution
(x) = x2—3—7x+§ z?
v = 20" " 10

Solution 6.3: The approximate solution of (22) at N =4, 6 and 8 gives

ys (2) = o — 1.852% + 0.8252% — 3.066883897¢ — 162

—4.293620945¢ — 232° + 8.08021702¢ — 222°

xTr) =
¥ (@) +xt — 1.852% + 0.8252% — 3.066883234¢ — 167

—6.772990005¢ — 22x® + 3.14953473¢ — 2127
ys (r) = | —6.066384787¢ — 212° + 6.916096771e — 21a°
+x* — 1.852% + 0.82522 — 3.066883108¢ — 16z

It is clearly shows from the examples presented that the present method can be considered as
an efficient method.

7. CONCLUSION

In this paper, the collocation method is used to solve Factional order integro differential
equations with dirichlet boundary condition using shifted legendre polynomial. From the results

obtained, it shows that the new method is efficient and suitable for this kinds of problems.

12
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