


FRACTIONAL ORDER FREDHOLM INTEGRO-DIFFERENTIAL EQUATIONS: A NUMERICAL SOLUTION APPLYING COLLOCATION POINTS

Abstract: Integro-differential equations are applied to model physical phenomena in science and engineering. They are found in many mathematical representations of physical phenomena (IDEs). Kinetic equations describing the kinetic theory of rarefied gases, plasma, coagulation, and radiation transport are a few problems. In this work, we developed and applied a numerical approach to solve Fredholm integro-differential equations of fractional order with collocation points. After obtaining the problem's integral form, we used the collocation points to convert it into an algebraic system of equations. We use matrix inversion to solve the algebraic equation. An analysis of the developed approach revealed that the results were convergent and continuous. Furthermore, it was shown that the answer was unique. The effectiveness and consistency of the technique were assessed using numerical examples.
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1. Introduction
Fractional differential and integral equations are used in many disciplines, such as physics, mathematics, engineering, and chemistry. Ordinary with partial differential equations are examples of real-world problems that can be represented mathematically as functional equations. Integro-differential equations are applied to model physical phenomena in science and engineering. They are found in many mathematical representations of physical phenomena (IDEs). Kinetic equations describing the kinetic theory of rarefied gases, plasma, coagulation, and radiation transport are a few problems[1].
The following are a few examples of numerical solutions for fractional differential equations that have been developed in the literature: Bernstein polynomials method [14–15], Perturbed collocation method [2], Adomian decomposition method [3-5], Collocation method [6–9], Hybrid linear multi-step method [10–11], Differential transform method [12], Pseudo-spectral method [13], Bernstein polynomials method [14–15], [16]; a numerical technique based on the Boubaker polynomial The operational matrix they chose to utilize for fractional integration was based on a Boubakar polynomial.
The fractional-order Fredholm Integro-differential equation of the form is studied in this study through its numerical solution.
                                                                  	       (1)          
using the initial condition
	                                                         	       	       (2)
where the unknown function is denoted by , the known function by , the Caputo's derivative by , the Fredholm integral kernel function by , and a known constant by
2. A Few Fundamental Terms and Definitions
In order to formulate the given problem, we provide certain definitions and basic ideas of fractional calculus in this part.
Definition 1: [1] For a given function  the Caputo fractional derivative with order  is defined as:
	                                                                            (3)
where 
Definition 2: [1] Let be a sequence of real integers and . The power series in t with coefficients is an equation.
                        				                                                      (4)
where  
then 
Definition 3: [1] This approach determines the necessary collocation sites between an interval. For example, [c,d] and is defined as
                                                                                                        (5)
Definition 4: [1] (Integration of nth derivatives) For  Let  be a continuous function, then
	                                                                                  (6)   
where
Definition 5: [1] Let  be an integrable function, then
	                                                                                     (7)
Definition 6: [1] The function  with the following characteristics is a metric on a set M.                                     
(a) 
(b) 
(c) 
(d) 

Definition 7: [1] (Metric space) Let  be a metric space. If there is a constant  such that, then a mapping  is Lipschitzian.
Theorem 1: [18] (Banach's fixed point theorem)  Every contraction mapping  has a distinct fixed point x of , such that , assuming that  is a full metric space.
3. Methodology 
This section introduces a numerical method for solving fractional-order Fredholm integro-differential equations with collocation points.
Lemma 1: Let  be the solution to equation (1) and equation (2),  then equation (1) and equation(2) is equivalent to
           	                                           	       (8)
where
  
Proof.
Multiply equation (1) by 0gives
0 0 0
using equation (6) and equation (7) on equation (1)  gives 
 
                                                               (9)
where

3.1 Solution Method
Equation (9) is collocated at 
  				              (10)
substituting equation (4) into equation (10) gives
 
 			              (11)
where 
  
Equation (11) can be in the form
                                                                                                                      (12)
where

3.2 Consideration of Initial Condition
Using the initial condition in equation (2)
   								             (13)


hence, equation (13) becomes
										             (14)
Adding equation (14) to equation (12) gives
									             (15)
The numerical result is obtained by substituting the values of the a's into the approximate solution after the algebraic problem (15) has been solved.
3.3 Uniqueness of the Solution 
Assuming that equations (1) and (2) have solutions, we demonstrated the uniqueness of the solution and provided solutions obtained using the method of solution in this section.
To establish the method's uniqueness, we present the following hypothesis.
H₁: Let  be a mapping for , There exist a constant, . such that	

H₂: There exist a functions  the set of all positive functions such that
	            
Theorem 2: Assume the  hold. If

Hence, there exist a unique solution .
Proof
Let  , applying Banach fixed point to equation (8) gives
          			              (16)
and 
          			             (17)
Subtracting equation (17) from equation (16) gives

Taking the absolute value of both sides gives
 
Taking the maximum of both sides and applying  gives 

The Banach contraction principle allows us to conclude that T has a unique fixed point
Lemma 3: (Continuity) Let  be a metric space and  be a mapping, let  and the . T is continuous if 
Proof.
 
 

Since as n→∞, then , therefore T is continuous
3.4 Convergence of the method
Lemma 4: (Convergence of method) Let  be a metric space and be a continuous mapping and  are approximate solutions of equation (4). Let , , then the method converges to exact solution.
Proof.
Let  and  be approximated by  and 
Substitute the approximate solution into equation (8) gives
  
Similarly
  

Since  and, hence 
Consequently, the solution approach converges.
4. A Few Numerical Illustrations
To assess the method's ease of use and effectiveness, this section provided numerical examples. Using the MAPLE 18 algorithm, it is computed. Assign  to the approximate solutions and  to the exact answers.. 
Example 1: [17] Consider  Fractional Fredholm integro-differential equation .
                           				                (18)
with initial condition
	
Exact solution: 


Solution 1: 
At N=3, the approximate solution of equation (18) yields

Table 1: values for the example's exact, approximate, and absolute errors
	X
	Exact Solution
	    NumericalN=3
	   Error3
	    Error[17]=3

	0.1
	-0.09000000000
	-0.089999999940
	      6.00e-11
	   1.00e-07

	0.2
	-0.16000000000
	-0.159999999900
	      1.00e-10
	    2.00e-07

	0.4
	-0.20000000000
	-0.239999999900
	      1.00e-10
	    8.00e-07

	0.6
	-0.24000000000
	-0.239999999900
	      1.00e-10
	    1.90e-06

	0.8
	-0.16000000000
	-0.159999999800
	      2.00e-10
	    3.60e-06



Example 2: [17] Consider  Fractional Fredholm integro-differential equation .
                           	              (19)
    subject to initial condition
	
    Exact solution: 
Solution 2: 
 The approximate result of equation (19) at N= 3



Table 2: values for the example's exact, approximate, and absolute errors
	X
	Exact Solution
	    NumericalN=3
	   Error3
	    Error[17]=3

	0.1
	 0.09900000000
	 0.09900000000
	      0.00
	    2.08e-05

	0.2
	 0.19200000000
	 0.19200000000
	      0.00
	    9.2e-05

	0.4
	 0.33600000000
	 0.33600000000
	      0.00
	    1.0e-07

	0.6
	 0.38400000000
	 0.38400000000
	      0.00
	    3.0e-07

	0.8
	 0.28800000000
	 0.28800000000
	      0.00
	    8.0e-07



5. Discussion of Results
This section discusses the numerical results obtained from the solved examples using the devised numerical approach.
According to Table 1's numerical result for Example 1, the approximate answer at  provides . At the same value of N=3, the numerical results provide a better result than the one obtained by [17].
Table 2 displays the approximate answer at N = 3 in numerical Example 2, which provides
. At the same value of N=3, the numerical results converged to an exact solution, showing that our approach performed better than the one proposed by [17].
5.1. Conclusion
The collocation point approach for fractional Fredholm integro-differential equations is investigated in this work. This approach is reliable, effective, and simple to compute. All of the computations in this study were done using Maple 18.
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