



Ensemble Methods for Time Series Forecasting in Nigeria: Predicting Agricultural Yields Using Advanced Machine Learning Approaches

Abstract

Accurate forecasting of agricultural yields is essential for maintaining food security, economic stability, and sustainable resource management in Nigeria. This research seeks to enhance the accuracy and reliability of yield predictions for three staple crops—maize, rice, and cassava—by employing ensemble methods. The study examined a comprehensive dataset covering 24 years (2000-2023) and investigated various individual forecasting models, including linear regression, ARIMA, Random Forest, Gradient Boosting, Support Vector Machines, and Neural Networks. Three ensemble methods—bagging, boosting, and stacking—were utilized, and the performance of the models was assessed using metrics such as Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and Mean Absolute Percentage Error (MAPE), along with statistical significance tests using R package. The findings indicated that ensemble methods significantly surpassed individual models across all metrics and crop types. The stacking ensemble method achieved the highest accuracy, reducing RMSE by 23.7% compared to the best individual model. This study offers compelling evidence that ensemble methods can substantially improve the accuracy of agricultural yield forecasting in Nigeria. These results have significant implications for food security planning, agricultural policy formulation, and resource allocation strategies, contributing to a more profound understanding of precision agriculture.
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Introduction

According to the Federal Ministry of Agriculture and Rural Development, agriculture is the backbone of Nigeria's economy, supporting over 70 million people and contributing roughly 24.1% of the nation's GDP as of 2023. According to the World Bank in 2024, Nigeria is facing major obstacles in attaining food security, promoting sustainable agricultural growth, and guaranteeing economic stability in rural areas due to its rapidly expanding population, which has surpassed 223 million and is growing at an annual rate of 2.6%. Numerous Nigerians depend on the agricultural sector's performance for their food security as well as the country's economy, particularly in rural areas where subsistence farming is the norm, according to Akande et al., (2023).

Nigeria's agricultural terrain is highly diverse, with a range of agro-ecological zones from the lush forest zone in the south to the arid Sahel savanna in the north. According to Nwafor et al. (2022), each of these zones has a unique set of difficulties, including varying rainfall patterns, soil types, pest problems, and socioeconomic circumstances. These difficulties have only gotten worse due to climate change, which has resulted in more frequent catastrophic weather events, unpredictable weather patterns, and shifting seasonal trends that conventional forecasting techniques frequently overlook, according to Adebayo & Ibrahim, (2023).

   
Figure 1: Time series lpot showing agriculture’s percentage contribution Nigeria’s Gross Domestic 

Product from 2000 to 2023. X-axis represent years (2000-2023), Y-axis shows percentage contribution to GDP (20-35%). The trend reveals a gradual decline from 32.2% in 2000 to a low 23.2% I 2020, following a slight recovery to 24.1% in 2023. This decline reflects Nigeria’s economy
Precise yield forecasting is essential for many stakeholders, including as farmers, officials, banks, and international aid agencies. In order to plan planting schedules, source inputs, and plan marketing strategies, farmers benefit from accurate forecasts. To prepare for food security, decide which imports to buy, and allocate funds for agricultural projects, policymakers rely on these projections. Additionally, financial organizations use yield estimates to evaluate agricultural credit risks and create insurance plans (Ogundipe et al., 2024).

International development organizations, farmers, governments, and financial institutions are just a few of the stakeholders who depend on accurate yield predictions. With accurate forecasts, farmers can plan when to sow, get the inputs they need, and create successful marketing campaigns. When planning for food security, deciding which imports to buy, and allocating funds for agricultural initiatives, policymakers rely on these projections. Additionally, financial institutions use yield estimates to evaluate agricultural credit risks and develop insurance plans. (Ogundipe et al., 2024).

According to Bamidele and Afolabi (2022), traditional agricultural output forecasting in Nigeria has primarily relied on expert opinions, simple statistical techniques, and linear regression models that presume a consistent link between variables and results. Agricultural systems, on the other hand, are inherently complex, with non-linear linkages, interaction effects, and temporal dependencies that are frequently missed by simplistic models. During periods of economic instability, technical advancements, or climate stress, the limitations of these traditional approaches are particularly evident. (Chukwu et al., 2023).

Exciting substitutes for conventional forecasting methods are offered by recent developments in machine learning and ensemble approaches. By utilizing the advantages of many modeling approaches and counteracting the drawbacks of individual models, ensemble methods—which combine predictions from multiple models—have demonstrated superior performance across a variety of disciplines (Chen et al., 2023). However, the majority of research focuses on industrialized economies with distinct agricultural systems and data availability, therefore their application in agricultural production forecasting in African contexts is still very restricted.  (Oladele et al., 2024). 
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Figure 2: Historical Yield Trend for Major Crops in Nigeria (2000-2023)

Source: Federal Ministry of Agriculture and Rural Development (FMARD), 2024

Note: Yield trends indicate progressive improvements with seasonal volatility, especially in cassava production

Figure 2: The examination of historical yield trends for key crops in Nigeria from 2000 to 2023 offers valuable insights into agricultural productivity. Cassava emerges as the top performer, with yields climbing from about 8.5 tonnes per hectare (t/ha) in 2000 to roughly 13.5 t/ha by 2023, showcasing impressive improvements in productivity. Rice is also on the rise, with yields increasing from 1.8 t/ha in 2000 to over 3.0 t/ha in 2023, hinting at advancements in farming practices or better resource use.

In contrast, maize yields have increased more gradually, rising from about 1.2 t/ha to 2.3 t/ha during the same period, albeit with significant fluctuations. This variation in maize yields points to susceptibility to shifting management techniques and climatic circumstances. Overall, the patterns suggest that Nigeria's agricultural output has increased, most likely as a result of better seed types, more advanced farming methods, and encouraging legislation. Nonetheless, the irregular production trends—particularly for maize—emphasize the continued necessity of concentrating on management and environmental aspects that affect crop performance..

This research is all about figuring out how well ensemble forecasting methods can predict agricultural yields for Nigeria's main staple crops, like maize, rice, and cassava. The goal is to evaluate how different individual forecasting models perform, including linear regression, ARIMA, Random Forest, Gradient Boosting, Support Vector Machines (SVM), and Neural Networks.

Additionally, in order to increase the precision of agricultural produce forecasts, the study intends to develop and implement three ensemble techniques: bagging, boosting, and stacking. Comparing the accuracy and dependability of these ensemble approaches to the individual models using a range of evaluation measures is a crucial component of this study.  In order to better understand the factors influencing yield estimates, the research also attempts to identify the most significant predictive elements for each crop and ensemble approach. The study's ultimate goal is to help improve decision-making in the agricultural planning industry in Nigeria by providing useful guidance on the application of ensemble forecasting methodologies.

The research hypotheses propose several key assertions regarding forecasting models in agricultural contexts. Firstly, it is hypothesized that ensemble methods will significantly outperform individual forecasting models in terms of prediction accuracy, indicating a potential advantage in combining multiple models for improved results. Secondly, among the various ensemble approaches, the stacking ensemble is expected to achieve the highest forecasting accuracy, suggesting that this method may leverage the strengths of different models more effectively than others.

Additionally, the research posits that machine learning models will surpass traditional statistical methods in performance across all crops studied, highlighting the growing importance and effectiveness of advanced computational techniques in agricultural forecasting. Lastly, it is anticipated that climatic variables will emerge as the most critical predictors across all models and crops, underscoring the significant role that environmental factors play in agricultural yield predictions. These hypotheses collectively emphasize the potential benefits of advanced modeling techniques and the importance of climatic considerations in agricultural forecasting.

This research makes several significant contributions to agricultural forecasting, precision agriculture, and development economics. First, it provides a thorough evaluation of ensemble methods for agricultural yield forecasting in Nigeria, addressing a notable gap in existing literature. Second, the study showcases how advanced machine learning techniques can be applied in data-limited settings typical of developing economies. Lastly, it offers evidence-based recommendations to enhance agricultural planning and food security strategies in Nigeria and similar regions (Adeyemi et al., 2024).

Literature Review  .   
In the early days of agricultural forecasting, experts mainly relied on their intuition and basic trend extrapolation methods. However, the mid-20th century saw a major shift with the introduction of statistical methods, particularly time series analysis, which became a go-to approach for identifying patterns over time in agricultural data (Anderson & Smith, 2019). The Autoregressive Integrated Moving Average (ARIMA) model, brought to light by Box and Jenkins (1976), gained popularity for its knack for modeling intricate temporal dependencies and seasonal trends found in agricultural time series.  

In Nigeria, several studies have utilized traditional time series methods to predict the yields of key crops. For instance, Adebayo et al. (2021) employed ARIMA models to forecast maize yields in northern Nigeria, achieving decent accuracy for short-term predictions but facing challenges with longer-term forecasts. Similarly, Okwu and Acheampong (2020) used seasonal ARIMA models for cassava yield forecasting, uncovering notable seasonal patterns but struggling to capture the non-linear relationships with climate variables.  

The rise of machine learning techniques has transformed agricultural forecasting by allowing for the modeling of complex, non-linear relationships between various predictors and crop yields. Random Forest, introduced by Breiman (2001), has shown great potential in agricultural contexts due to its ability to manage mixed data types, capture interaction effects, and rank feature importance (Kumar et al., 2023).

Support Vector Machines (SVMs) have made quite an impact in predicting agricultural yields across various scenarios. Mountrakis et al. (2021) highlighted how effective SVMs are at managing the high-dimensional data that’s typical in agricultural systems. Meanwhile, Li et al. (2022) pointed out their strength in dealing with outliers and noise, which are often found in agricultural datasets. On the other hand, neural networks, especially deep learning techniques, have been gaining traction for their knack for uncovering complex patterns and interactions (Zhang & Wang, 2023). 

In sub-Saharan Africa, while the use of machine learning for agricultural forecasting is still in its early stages, it is definitely on the rise. For instance, Munyabvuro et al. (2022) utilized Random Forest for forecasting maize yields in Zimbabwe, achieving notable improvements compared to traditional methods. Similarly, Kone et al. (2023) applied neural networks for predicting rice yields in Mali, showcasing the promise of these techniques in West African settings.

Ensemble methods mark a significant shift from depending on single models to blending multiple models for more accurate and reliable predictions. The theory behind ensemble methods is rooted in the bias-variance decomposition of prediction error. Individual models can either have high bias (leading to under fitting) or high variance (resulting in over fitting), but by combining them, both types of errors can be minimized (Hastie et al., 2009).

Bias-Variance Decomposition:

E[(Y - f̂(X))²] = Bias²[f̂(X)] + Var[f̂(X)] + σ²



(1)

Three primary ensemble strategies have proven particularly effective: bagging (Bootstrap Aggregating), boosting, and stacking. Bagging, introduced by Breiman (1996), helps reduce variance by training multiple models on different bootstrap samples of the training data and averaging their predictions. Boosting techniques, like AdaBoost (Freund & Schapire, 1997) and Gradient Boosting (Friedman, 2001), train models sequentially to fix the errors made by earlier models, which effectively lowers bias.

Stacking, also known as stacked generalization (Wolpert, 1992), is a more advanced technique where a meta-learner is trained to effectively merge predictions from various base models. This method has shown great potential, especially when the base models bring different strengths and weaknesses to the table (Sagi & Rokach, 2018).  In recent years, the use of ensemble methods for agricultural forecasting has really taken off, with numerous studies showcasing their success across various crops and regions. For instance, Jeong et al. (2016) applied these methods to predict corn yields in the United States, achieving impressive accuracy improvements of 15-20% compared to using individual models. Their findings underscored the significance of having diverse base models to enhance ensemble performance.

In Europe, Rodriguez-Galiano et al. (2018) explored ensemble methods for predicting crop yields across several countries, discovering that stacking ensembles consistently outperformed both individual models and simpler ensemble techniques. Their research highlighted the value of integrating diverse data sources, such as satellite imagery, weather data, and soil information.

However, the use of these methods in African agricultural systems is still quite limited, although  Wanjiku et al. (2024) recently implemented ensemble methods for maize yield forecasting in Kenya, which improved accuracy (80% accuracy) by 18% compared to traditional methods (62% accuracy). The study illustrated the impact of combining satellite images against both ground-based measurements and the use of ensemble framework; Mensah and Osei (2024) combined soil data, economic indicators, and climate variables to create a stacking ensemble model for predicting cocoa yield in Ghana. Their method greatly outperformed individual models, achieving R2 values above 0.87. A national-scale ensemble forecasting system combining Random Forest, XGBoost, and LSTM models was put into place by the Ethiopian Agricultural Research Institute. According to Tadesse et al. (2023), the system increased early warning capabilities for food security planning by 35%. there is still a notable gap, especially considering the unique challenges that African agriculture faces, such as high climate variability, low levels of technological adoption, and data limitations (Tadesse et al., 2023).  Today’s agricultural forecasting increasingly depends on the integration of various data sources to capture the complexities of agricultural systems. Weather data—like temperature, precipitation, and humidity patterns—forms the backbone of most forecasting models (Roberts et al., 2022). Additionally, soil characteristics such as pH, organic matter content, and nutrient levels are essential for understanding yield potential (Brown et al., 2021).

Satellite remote sensing has become an invaluable resource, offering insights into vegetation indices, land use trends, and crop growth patterns (Johnson & Lee, 2023). Yet, when it comes to using remote sensing data in Africa, there are hurdles to overcome, such as cloud cover, limited access to data, and the complexities of processing that data (Owusu et al., 2022).

Evaluation Metrics and Model Validation

To properly evaluate forecasting models, it is crucial to consider a variety of metrics and validation methods. While Root Mean Square Error (RMSE) is the go-to metric for continuous predictions, it is best used;
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 Mean Absolute Error (MAE):  MAE is pretty straightforward; it tells the average absolute difference between what was predicted and what actually happened.  
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 Mean Absolute Percentage Error (MAPE): Mean Absolute Percentage Error (MAPE): MAPE shows error as a percentage, which helps compare across different scales for a well-rounded performance evaluation (Hyndman & Koehler, 2006). 
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R-squared (R²): R² tells how much of the variance in the dependent variable is explained by our model.  
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Employing time series cross-validation techniques, like rolling origin or expanding window methods, is vital for a realistic assessment of forecasting models (Tashman, 2000). These techniques honor the time-related structure of agricultural data and yield strong estimates of how models perform on unseen data.

Methodology

Study Area and Scope

The study zeroes in on Nigeria, encompassing all 36 states and the Federal Capital Territory. The country's diverse agro ecological zones make it a perfect backdrop for testing forecasting methods under different environmental conditions. A study period of 24 years (2000-2023) was looked into, which gives us plenty of data to develop and validate our models while capturing a range of economic and climatic cycles.
Data Collection and Sources  

This study draws on a rich dataset that combines information from various sources to truly reflect the intricate factors influencing agricultural yields. The data collection process was thorough, focusing on four key categories:  

Firstly, agricultural production data was obtained from the Federal Ministry of Agriculture and Rural Development, the National Bureau of Statistics, and the Food and Agriculture Organization. This dataset includes annual yield figures for maize, rice, and cassava, detailing state-level yields in tonnes per hectare and total production volumes. To ensure data reliability, cross-validation across different sources was conducted.

Secondly, climatic variables were sourced from the Nigerian Meteorological Agency and global datasets. Key meteorological factors examined include monthly and seasonal precipitation, temperature readings, relative humidity, solar radiation, wind speed, and drought indices such as the Standardized Precipitation Index and the Palmer Drought Severity Index.

Thirdly, socio-economic indicators were collected from the Central Bank of Nigeria, the World Bank, and the National Bureau of Statistics. This data encompasses agricultural credit disbursement, fertilizer consumption, agricultural GDP contributions, rural population density, infrastructure indices, and market prices for major crops. The aim is to explore the interplay between meteorological and economic factors within Nigeria's agricultural sector.

Lastly, soil and environmental data were gathered from various sources, including digital soil maps from the Harmonized World Soil Database. This data provides insights into soil characteristics such as pH, organic carbon content, and nutrient levels. Additionally, changes in land use and land cover were analyzed using satellite imagery, while elevation and slope data from Digital Elevation Models contributed to understanding how topography affects soil properties. This multifaceted approach facilitates a thorough examination of the relationships between soil health, environmental factors, and agricultural productivity.
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Figure 3: Overview of dataset composition demonstrating comprehensive coverage across temporal, spatial, and crop dimensions.

In Figure 3 above the low missing data rate (<3%) indicates high-quality data collection and preprocessing, essential for reliable model training. The balanced design (24 years × 36 states × 3 crops) provides robust statistical power for ensemble method evaluation and ensures representativeness across Nigeria's diverse agroecological zones

Data Preprocessing and Feature Engineering 
The data preprocessing and feature engineering phase was meticulously executed to enhance the quality and readiness of multi-source agricultural data for modeling. A critical aspect of this process involved addressing missing data, where patterns were analyzed using Little's Missing Completely at Random (MCAR) test. For variables with less than 15% missing values, multiple imputations via chained equations (MICE) was applied, while variables with higher missing rates were either excluded or replaced with proxy variables when feasible.

Outlier detection and treatment were also integral to the preprocessing phase. Various methods, including the Turkey method based on interquartile range (IQR), z-score analysis, and isolation forests, were employed to identify outliers. Agricultural expertise played a crucial role in distinguishing between legitimate extreme events, such as droughts and floods, and inaccuracies in the data. Verified extreme events were retained, whereas erroneous data points were corrected or removed.

In terms of feature engineering, a range of derived features was created to improve model performance. These features encompassed aggregates of climatic variables throughout the growing season, which are vital for understanding the overall impact of climate on agricultural growth. Lagged variables were introduced to capture temporal dependencies, allowing the model to account for how past climatic conditions influence current outcomes. Interaction terms between climate and soil variables were developed to explore their combined effects on predictions. Additionally, drought stress indicators based on precipitation patterns were established to provide insights into water availability and its implications for plant health. The incorporation of trend and seasonal decomposition components further enabled the examination of long-term patterns and seasonal variations in the data, thereby enhancing the model's predictive capabilities.

Model Development Framework

Our methodology utilizes a thorough framework that combines both individual models and ensemble methods to enhance forecasting accuracy and reliability. This framework was crafted to harness the strengths of various modeling techniques while addressing their unique limitations.

The analysis employed multiple linear regression models with regularization techniques, including Ridge, Lasso, and Elastic Net, as baseline predictors. These models are valued for their ability to elucidate relationships among variables and their computational efficiency, which aids in understanding predictor significance and establishing performance benchmarks.

Seasonal ARIMA models were utilized to effectively capture temporal dependencies and seasonal trends in yield data, following the Box-Jenkins methodology. This approach emphasized rigorous residual diagnostics and the evaluation of forecast performance to ensure model accuracy.

In the implementation of Random Forest models, hyper parameters were meticulously fine-tuned to achieve an optimal balance between bias and variance. Key parameters such as the number of trees, maximum depth, and minimum samples per leaf were optimized through cross-validation, leading to valuable insights into feature importance.

For gradient boosting, XGBoost was selected, with significant efforts directed towards optimizing hyper parameters like learning rate, maximum depth, subsample ratio, and regularization parameters. Early stopping techniques were employed to mitigate the risk of over fitting.

Support Vector Machines (SVM) were developed using radial basis function kernels, with hyper parameters (C, gamma) optimized through grid search and cross-validation. Feature scaling was applied to enhance model performance.

Lastly, multi-layer perceptron networks were implemented as part of the neural network approach. To prevent over fitting, dropout regularization and early stopping were utilized, with the architecture selected based on validation performance. This comprehensive modeling strategy underscores the importance of careful parameter tuning and validation in achieving robust predictive performance.

Ensemble Methods Implementation

The text outlines three ensemble learning techniques: bagging, boosting, and stacking, each with distinct methodologies and applications.

The bagging ensemble method utilizes multiple models trained on bootstrap samples of the dataset. Each model contributes equally to the final prediction, which is computed as the simple average of the individual model predictions. This approach aims to reduce variance and improve overall model stability.

Bagging Prediction:

ŷbag = (1/M) ∑(i=1 to M) fi(x)




(6)

In contrast, the boosting ensemble method adopts a sequential training strategy. New models are trained iteratively, with each one specifically designed to address the errors made by its predecessors. This technique employs adaptive weighting, allowing models that perform better to have a greater influence on the final prediction, thereby enhancing accuracy.

The stacking ensemble method features two-level architecture. At the first level, various base models generate predictions, which are then combined by a meta-learner, specifically linear regression, at the second level. Cross-validation is employed to train the meta-learner, effectively mitigating the risk of over fitting and improving the robustness of the predictions.

Stacking Prediction:
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Overall, these ensemble techniques leverage the strengths of multiple models to enhance predictive performance, each with unique mechanisms for error correction and model integration.

Model Evaluation and Validation

A thorough evaluation framework was set up to gauge how well our model performs across different aspects, ensuring we draw solid conclusions. To do this, a variety of performance metrics were used. For instance, the Root Mean Square Error (RMSE) was looked at, to pinpoint larger errors, the Mean Absolute Error (MAE) for its resilience against outliers, and the Mean Absolute Percentage Error (MAPE) for comparisons that are not affected by scale. The Symmetric Mean Absolute Percentage Error (sMAPE) was also included to tackle MAPE's shortcomings with zero values, and R-squared (R²) to show how much variance that could be explain.

For the cross-validation, a time series approach was looked at using an expanding window method to keep the data's temporal structure intact. Things were kicked off with a training period from 2000 to 2015, followed by a validation phase from 2016 to 2018, updating annually in the expanding window. The final out-of-sample testing took place from 2020 to 2023.

To evaluate whether the performance improvements were statistically significant, we ran several tests. These included paired t-tests to compare forecast errors between models, the Diebold-Mariano test for checking forecast accuracy, the Wilcoxon signed-rank test for non-parametric comparisons, and bootstrap confidence intervals for reliable inference.

On top of that, model interpretability was boosted by analyzing feature importance through various methods. This involved using permutation importance for all models, SHAP (SHapley Additive exPlanations) values specifically for tree-based models, coefficient analysis for linear models, and partial dependence plots to clarify how features relate to one another.

Results and Analysis
This section presents the detailed results from applying various individual models and ensemble methods to forecast agricultural yields in Nigeria. The analysis highlights how ensemble approaches outperform others while shedding light on the key factors that influence agricultural productivity.

Dataset Characteristics and Descriptive Statistics

The final dataset included 8,832 observations, which were gathered over 24 years across 36 states and for 3 different crops, featuring 47 predictor variables after we completed preprocessing and feature engineering. The data quality was impressive, with less than 3% of values missing across all variables after we handled imputation. Each of the three crops displayed unique yield patterns and variability traits, reflecting their specific growing needs and the dynamics of the market.

Table 1: Descriptive Statistics for Crop Yields (2000-2023)
	Crop
	Mean Yield (t/ha)
	Std Dev
	Min
	Max
	Coefficient of Variation
	Trend (% per year)

	Maize
	2.47
	0.89
	0.82
	5.21
	36.00%
	2.30%

	Rice
	3.15
	1.23
	1.12
	6.87
	39.10%
	1.80%

	Cassava
	12.34
	4.67
	4.23
	28.91
	37.80%
	1.20%


Maize has shown a steady growth trend, increasing by 2.3% each year. This rise is largely due to the growing use of improved varieties and better farming practices. Rice, on the other hand, has seen an annual yield increase of 1.8%, but this varies quite a bit from state to state, largely because of differences in irrigation systems and farming methods. Cassava, while it boasts the highest overall yields, has only improved modestly at 1.2% per year, suggesting there’s room for growth through new technologies.
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Figure 4: Left panel shows annual yield trends for three major crops in Nigeria from 2000-2023. 

In figure 4, the x-axis represents years, y-axis shows yield in tonnes per hectare (t/ha). Maize demonstrates the steepest upward trend (+2.3% annually), followed by rice (+1.8% annually) and cassava (+1.2% annually). Right panel displays coefficient of variation as a measure of yield stability. All crops show similar variability (36-39%), indicating comparable production risk levels despite different absolute yield levels. The consistent upward trends reflect improved agricultural practices and variety adoption, while maintained variability suggests continued influence of climatic and management factors.
Individual Model Performance

All individual models were evaluated using a thorough validation framework, looking at various metrics and crop types. The findings show notable differences in how well each model performed, with machine learning techniques generally surpassing traditional statistical methods.

Table 2: Individual Model Performance Comparison
	Model
	RMSE
	MAE
	MAPE (%)
	R²
	Training Time (min)

	Linear Regression
	0.847
	0.623
	18.7
	0.634
	0.8

	ARIMA
	0.789
	0.578
	16.9
	0.683
	12.3

	Random Forest
	0.698
	0.489
	14.2
	0.751
	8.7

	Gradient Boosting
	0.673
	0.467
	13.8
	0.769
	15.2

	SVM
	0.712
	0.501
	14.8
	0.741
	23.6

	Neural Network
	0.721
	0.518
	15.1
	0.735
	28.4


As shown in figure 5 and Table 2, Gradient Boosting really stood out with the best individual model performance, hitting an RMSE of 0.673, while Random Forest was not far behind at 0.698 RMSE. These tree-based techniques excelled at capturing the non-linear relationships and feature interactions that are so common in agricultural data. On the other hand, traditional methods did their job but had noticeable limitations, with Linear Regression landing the highest RMSE at 0.847.
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Figure 5: Comprehensive performance comparison of six individual forecasting models across four 

key  metrics.

In Figure 5 the x-axis shows different models, while y-axes display normalized performance scores (lower is better for RMSE, MAE, MAPE; higher is better for R²). Gradient Boosting emerges as the best individual performer with lowest RMSE (0.673) and highest R² (0.769), followed closely by Random Forest (0.698 RMSE). Tree-based methods (Random Forest, Gradient Boosting) consistently outperform traditional statistical approaches (Linear Regression, ARIMA) and neural networks, indicating their superior ability to capture non-linear agricultural relationships. The performance gap between best (Gradient Boosting) and worst (Linear Regression) models represents a 20.5% difference in RMSE, highlighting the importance of model selection in agricultural forecasting. 

Ensemble Method Results

The ensemble methods brought about significant improvements over the individual models, with all three strategies—bagging, boosting, and stacking—showing statistically significant performance boosts. These results back up the main idea that blending multiple models leads to more accurate and reliable predictions than sticking with just one.

The key performance insights reveal that the Stacking Ensemble delivered the best overall results, achieving a remarkable 23.7% drop in root mean square error (RMSE) compared to the top individual model. Close behind, the Boosting Ensemble made a notable impact with a 16.8% RMSE reduction. The Bagging Ensemble also played a positive role, contributing to a 12.9% reduction in RMSE. It's worth highlighting that all the improvements seen in the ensemble methods were statistically significant, with a p-value of less than 0.01, reinforcing the trustworthiness of these findings.

Table 3: Ensemble Method Performance Results
	Method
	RMSE
	MAE
	MAPE (%)
	R²
	Improvement vs

 Best Individual
	p-value

	Bagging
	0.586
	0.398
	11.7
	0.835
	12.90%
	< 0.001

	Boosting
	0.56
	0.379
	11.1
	0.853
	16.80%
	< 0.001

	Stacking
	0.513
	0.342
	10.2
	0.878
	23.70%
	< 0.001


The impressive performance of the stacking ensemble comes from its knack for learning the best combinations of predictions from various base models, thanks to the meta-learner. Unlike simpler methods like bagging, which just averages predictions, or boosting, which corrects them sequentially, stacking cleverly harnesses the unique strengths of different models while reducing their individual weaknesses.
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Figure 6: Dramatic performance improvements achieved by ensemble methods compared to 

best individual model (Gradient Boosting baseline). 

The x-axis in Figure 6 shows different approaches, y-axis displays RMSE values (lower is better). Red dashed line indicates best individual model performance (0.673 RMSE). All ensemble methods achieve statistically significant improvements (p < 0.001): Bagging reduces RMSE by 12.9%, Boosting by 16.8%, and Stacking by 23.7%. The stacking ensemble's superior performance (0.513 RMSE) represents a breakthrough in agricultural forecasting accuracy, demonstrating the value of sophisticated model combination strategies over simple averaging or sequential approaches. 

Forecast Accuracy by Crop Type 

The performance varied quite a bit across different crops, which can be attributed to their unique growing characteristics, the availability of data, and how predictable they are. Maize stood out with the highest predictability, likely because it has a shorter growing season and is more directly influenced by climate. On the other hand, cassava was the toughest to predict, reflecting its perennial nature and intricate growth patterns.

Table 4: Stacking Ensemble Performance by Crop
	Crop
	RMSE
	MAE
	MAPE (%)
	R²
	Key Predictors

	Maize
	0.421
	0.298
	8.7
	0.912
	Precipitation, Temperature, Fertilizer

	Rice
	0.567
	0.378
	10.9
	0.858
	Irrigation, Rainfall, Soil pH

	Cassava
	0.651
	0.449
	12.1
	0.816
	Soil Organic Matter, Drought Index


Feature Importance Analysis

Looking at feature importance, it became clear that climatic variables consistently ranked as the top predictors across all models and crops, backing up Hypothesis H₄. However, the significance of specific variables changed depending on the crop type, highlighting their distinct physiological needs and growth patterns. Precipitation during the growing season turned out to be the most crucial predictor overall, followed closely by temperature and soil characteristics. Including lagged weather variables was essential, as conditions from previous seasons have a significant impact on current yields. While economic variables were less critical on their own, they played a meaningful role in enhancing ensemble performance through their interactions.
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Figure 7: Relative importance of key predictor variables for each crop type, revealing distinct 

agricultural requirements and sensitivities. 

The y-axis in Figure 7 shows normalized importance scores (0-1 scale), x-axis lists major predictor categories. Climatic variables dominate across all crops, confirming Hypothesis H₄, but with crop-specific variations. Maize shows highest sensitivity to precipitation and temperature, reflecting its annual cycle. Rice demonstrates strong dependence on irrigation and soil pH, consistent with wetland cultivation requirements. Cassava relies heavily on soil organic matter and drought tolerance, reflecting its adaptation to marginal conditions. These insights support targeted agricultural interventions and input optimization strategies.

Temporal Validation and Forecast Performance

The temporal validation, which used expanding window cross-validation, shed light on how stable and adaptable the models are over time. Ensemble methods demonstrated greater consistency across various time periods, showing less variance in performance metrics compared to individual models.

The out-of-sample testing period from 2020 to 2023 included the tough times of COVID-19 and some unusual weather patterns, which really put the model's resilience to the test. Ensemble methods held onto their performance edge even during this unpredictable time, showcasing their real-world value.

Regional Performance Variations

The study reveals regional trends in Nigeria's crop prediction, with northern states showing better accuracy due to distinct seasonal patterns and less variable rainfall. Southern states, with more intricate rainfall patterns and higher humidity, are harder to predict accurately.  The Middle Belt states have the highest prediction accuracy for all crops, suggesting a favorable environment for agricultural forecasting. Coastal states face challenges due to complex climate interactions, while arid northern states show variability in cassava predictions. Reliable data quality consistently improves model performance.

Discussion

The findings from this thorough study provide strong evidence for the effectiveness of ensemble methods in forecasting agricultural yields in Nigeria. This section delves into the implications of these results, their practical significance, and how they contribute to the wider conversation on precision agriculture and forecasting techniques.

Theoretical Contributions and Model Performance  

The impressive performance gains seen with ensemble methods, really back up some key theoretical ideas about the balance between bias and variance, as well as the advantages of combining models. The stacking ensemble's 23.7% improvement in RMSE is not just a number; it represents a meaningful leap forward that could greatly enhance how to plan and make decisions in agriculture.  

The fact that the stacking ensemble outshines both bagging and boosting techniques indicates that tackling agricultural yield predictions benefits from more advanced model combination strategies. Unlike other fields where simple averaging does the trick, agricultural forecasting seems to need the careful weighting that meta-learning offer. This insight is crucial for guiding future research and practical applications.  

The consistent edge that machine learning methods have over traditional statistical techniques (like ARIMA and linear regression) highlights the intricate, non-linear characteristics of agricultural systems. Yet, the role of traditional methods as foundational learners in ensembles points to a partnership rather than a replacement, where various approaches capture different facets of the underlying system dynamics.  

Practical Implications for Agricultural Planning  

The accuracy gains showcased in this study carry significant real-world implications for a range of players in Nigeria's agricultural landscape. For government agencies focused on food security planning, the improved forecast accuracy allows for more precise predictions of domestic production, leading to smarter decisions regarding food imports, strategic reserves, and intervention programs.

Theoretical Contributions and Model Performance  

The remarkable performance improvements we've seen with ensemble methods really support some important theoretical concepts about balancing bias and variance, as well as the benefits of combining different models. The stacking ensemble's 23.7% boost in RMSE isn't just a statistic; it signifies a substantial advancement that could significantly improve our planning and decision-making in agriculture.  

The fact that the stacking ensemble outperforms both bagging and boosting techniques suggests that when it comes to predicting agricultural yields, there is obvious need for more sophisticated model combination strategies. Unlike other areas where simple averaging works just fine, agricultural forecasting seems to require the thoughtful weighting that meta-learning provides. This understanding is vital for steering future research and practical applications.  

The consistent advantage that machine learning methods hold over traditional statistical techniques (like ARIMA and linear regression) underscores the complex, non-linear nature of agricultural systems. However, the role of traditional methods as foundational learners in ensembles indicates a collaborative approach rather than a replacement, where different methods capture various aspects of the underlying system dynamics.  

Practical Implications for Agricultural Planning  

This study reveals significant improvements in Nigeria's agricultural sector's forecast accuracy, benefiting government agencies, financial institutions, and farmers. The improved forecasts enable more precise predictions of domestic production, leading to smarter decisions about food imports, strategic reserves, and intervention programs.

 
Financial institutions can assess agricultural credit risks and develop insurance products, leading to lower interest rates for farmers and increased investment in agriculture. On the farm, improved forecasts enable smarter planning for input purchases, labor distribution, and marketing strategies.

Climate Resilience and Adaptation Planning

The significant impact of climate variables on forecast accuracy presents both opportunities and challenges for adapting to climate change in Nigerian agriculture. The effective use of drought indices and extreme weather indicators shows that ensemble methods can successfully capture the interactions between climate and agriculture, making them essential tools for assessing climate risks and planning adaptations.

The differences in forecast performance across regions highlight the unique climate challenges faced in Nigeria's various agro ecological zones. The better results seen in northern states, where seasonal patterns are more predictable, suggest that ensemble methods could be especially useful in areas with significant climate risks, where accurate forecasting can help shape targeted adaptation strategies.

Moreover, the recognition of lagged climate variables as key predictors shows that ensemble methods can account for the lasting effects of past conditions on agricultural productivity. This ability is crucial for understanding and anticipating the impacts of multi-season climate events like droughts or floods.

Technology Transfer and Scalability Considerations

When it comes to ensemble methods, the heavy computational demands and data needs raise some crucial questions about how they can be effectively used in settings with limited resources. While these methods clearly show impressive performance, putting them into practice means we need to think about the technical capabilities, data infrastructure, and the strengths of the institutions involved. 

The good news is that once the models are trained, the computational demands for making predictions are relatively low. This means we could generate ensemble forecasts in a central location and share them through existing agricultural extension networks. By doing this, we can harness the power of advanced forecasting while keeping local technical demands to a minimum. 

This study underscores the critical importance of data quality, highlighting the need for ongoing investment in agricultural statistics and monitoring systems. The effectiveness of ensemble methods hinges on having reliable and comprehensive data, which suggests that enhancing data collection should be a top priority if we want to unlock the full potential of these advanced forecasting techniques. 

Limitations and Future Research Directions

The study presents promising results for agricultural forecasting and management in Nigeria, but acknowledges limitations. Historical data reliance may be challenging during technological shifts or climate events, and the analysis was conducted at a state level, overlooking significant variations in agricultural productivity and forecasting accuracy at a sub-regional level. 

Future research should explore higher resolution methods, such as satellite imagery and precision agriculture data, to develop forecasting capabilities at the farm level. The study also suggests combining real-time satellite imagery with data from IoT sensors for more precise and timely information. Creating forecasting models tailored to sub-national levels is crucial for tackling specific agricultural challenges. Ensemble methods for predicting crop diseases and pests could enhance forecast reliability. 

Evaluating the economic impact of improved forecasting accuracy is essential. Adapting forecasting methods to smallholder farming systems is also crucial. Finally, merging agricultural forecasting with climate change projection models offers a comprehensive approach to understanding and addressing climate variability's effects on agriculture.

Policy Implications and Recommendations

The insights from this study carry significant weight for agricultural policy in Nigeria and other developing economies. The proven advantages of ensemble forecasting indicate that investing in agricultural data systems and forecasting capabilities could lead to substantial benefits through better planning and reduced production risks.

The importance of weather data, as highlighted in the feature importance analysis, underscores the need for ongoing investment in meteorological infrastructure and data collection systems. It's crucial to prioritize improving the density and quality of weather stations to enhance agricultural forecasting capabilities. 

The variations in forecast performance across different regions suggest that we might need tailored approaches, with distinct forecasting strategies and input requirements for various agro ecological zones. This insight supports decentralized agricultural planning that acknowledges regional diversity while taking advantage of advanced forecasting techniques.

Conclusions

The study demonstrates the effectiveness of ensemble methods in forecasting agricultural yields in Nigeria, a significant step forward in precision agriculture for developing economies. Ensemble methods outperform individual forecasting models, with all three techniques achieving significant reductions in root mean square error (RMSE) compared to single models. 

The stacking ensemble method stands out with the highest accuracy, supporting Hypothesis H₂ and showcasing the power of advanced model combination strategies. Tree-based machine learning methods, particularly Random Forest and Gradient Boosting, consistently outperform traditional statistical techniques, reinforcing Hypothesis H₃. Climate-related variables emerged as the most significant predictors across all models, supporting Hypothesis H₄. 

The 23.7% boost in prediction accuracy from the stacking ensemble is a game-changer for agricultural planning, risk management, and policy development. The study addresses a major gap in African agricultural research, shows how advanced machine learning techniques can be effectively applied in data-limited settings, and provides evidence-based suggestions for enhancing agricultural planning and food security strategies.
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