



Anomaly Detection in Time Series Data for Cyber security: Integrating Supervised, Semi-supervised, and Unsupervised Methods

Abstract

This paper investigates how anomaly detection techniques are being applied in the world of cyber security, highlighting the blend of supervised, semi-supervised, and unsupervised methods. As cyber threats grow more complex and the amount of time series data from network activities skyrockets, effective detection strategies are needed more than ever. Various methodologies were thoroughly analyzed, weighing their pros and cons, along with real-world applications. The experimental findings reveal that using ensemble approaches—where multiple detection methods work together—can significantly outperform single-method strategies, cutting false positive rates by as much as 37% and boosting detection accuracy by 24% across a range of attack types. The paper concludes with thoughts on future research paths, especially focusing on adaptive learning systems that can keep pace with the ever-changing threat landscape.
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Introduction

The rapid rise in digital connectivity has led to the creation of extensive networks of systems that continuously generate streams of time series data. These systems are crucial to various sectors, including critical infrastructure, financial services, healthcare, and many others that support the framework of modern society. Alongside this growth, cyber threats have become more sophisticated, with attacks that are stealthier, more persistent, and increasingly damaging. Traditional security measures that rely on signatures have fallen short against zero-day exploits and advanced persistent threats (APTs) that can slip past standard detection methods (Chandola et al., 2009).

In today’s world, anomaly detection systems have become essential players in the realm of cyber security (Khan et al., 2025). These systems dive into patterns found in time series data—think network traffic, system logs, user behaviors, and application performance metrics—to spot any unusual activity that might signal a security breach. Unlike traditional signature-based methods that depend on known patterns, anomaly detection has the potential to uncover new threats by identifying when things stray from what is considered normal behavior.

Even with the progress made in anomaly detection techniques, there are still quite a few hurdles to overcome. Organizations are often inundated with a massive amount of diverse data streams, which makes thorough monitoring a real challenge. On top of that, what constitutes "normal" behavior in ever-changing systems is constantly shifting, turning it into a moving target for detection algorithms. Perhaps the biggest issue is that many existing methods tend to generate a lot of false positives, leading to alert fatigue and possibly overshadowing real threats (Sommer & Paxson, 2010).

These challenges are further complicated by the limitations of individual detection methods. Supervised techniques need labeled datasets, which are often hard to come by in the cyber security field. Unsupervised methods can struggle to tell apart harmless anomalies from malicious actions. While semi-supervised techniques show promise, they often lack the robustness needed to handle various types of attacks. As a result, there is a clear need for integrated approaches that combine the strengths of different detection methods while addressing their weaknesses.

The aim of this paper is to investigate the different methods for spotting anomalies in time series data, particularly in the realm of cyber security. Its goal is to assess how well various learning techniques—like supervised, semi-supervised, and unsupervised learning—can pinpoint different cyber threats. The research also aims to create a framework that brings these methods together, improving detection systems so they can effectively handle a variety of data types and attack strategies. Moreover, the study evaluates how the proposed integrated approach stacks up against individual methods, using both standard and specialized evaluation metrics. It also sheds light on the main challenges encountered in this field and points out promising research avenues that could push forward the development of anomaly detection techniques in cyber security.

Literature Review  

Anomaly detection, at its core, is all about spotting patterns that just do not fit the norm (Chandola et al., 2009). In the realm of cyber security, these oddities often signal intrusions, data breaches, or other malicious activities that could jeopardize the integrity, confidentiality, or availability of systems. When it comes to time series data, anomalies can be grouped into three main types, as described by Blazek et al. (2001). The first type is point anomalies, which are single data points that stand out because they stray far from what is expected. A classic example would be a sudden surge in network traffic from a particular endpoint.

Next up are contextual anomalies. These are data points that only seem out of place when viewed in a specific context. For example, a typical amount of traffic might raise eyebrows if it happens at an unusual hour.

Finally, we have collective anomalies, which are clusters of related data points that, when looked at together, reveal a departure from the usual pattern. A good illustration of this would be a steady rise in failed login attempts, hinting at a possible security threat. Grasping these categories is essential for effective anomaly detection and analysis in time series data

 When it comes to spotting anomalies, traditional statistical methods have been around for a while. They include tools like control charts, regression models, and time series analysis techniques such as Autoregressive Integrated Moving Average (ARIMA) and Seasonal Decomposition of Time Series (STL). These approaches create a statistical profile of what normal behavior looks like and then flag any deviations that go beyond set thresholds (Lazarevic et al., 2003).  

Control charts, which come from the realm of statistical process control, keep an eye on time series data for any points that exceed control limits—usually set at three standard deviations from the average. While they are straightforward and efficient, these methods can struggle with non-stationary data and complex time-related dependencies (Ye et al., 2002).  

On the more advanced side, we have methods like Exponential Weighted Moving Average (EWMA) and Cumulative Sum Control Chart (CUSUM). These techniques take into account the temporal context by giving more weight to recent observations. They tend to perform better when it comes to detecting gradual anomalies, but they can still be sensitive to how parameters are set and the assumptions about data distribution (Thottan & Ji, 2003).   

Machine learning has really taken off lately, especially for its knack for handling high-dimensional data and uncovering complex patterns. Supervised learning techniques like Support Vector Machines (SVM), Random Forests, and Gradient Boosting have shown great success in distinguishing between normal and anomalous behaviors, provided there’s labeled training data available (Buczak & Guven, 2016, Khan et al., 2025, Ajimatanrareje et al., 2025).  

Decision trees and rule-based systems are particularly appealing because they offer interpretable models, which is crucial in security situations where you need actionable insights. However, these methods can hit a wall when faced with new attack vectors they have not seen before, and they often need to be retrained periodically to stay effective (Garcia-Teodoro et al., 2009).

Unsupervised learning techniques, like clustering algorithms (think k-means and DBSCAN), principal component analysis (PCA), and isolation-based methods (like Isolation Forest), work their magic without needing labeled data. They spot anomalies as those odd observations that stand out from the crowd. While these methods are great at uncovering new anomalies, they can sometimes lead to more false positives compared to their supervised friends (Goldstein & Uchida, 2016).

Deep learning has truly changed the game in anomaly detection by automatically learning complex feature representations from raw data. Recurrent Neural Networks (RNNs), especially Long Short-Term Memory (LSTM) networks, are fantastic at capturing temporal dependencies in sequential data, making them a perfect fit for time series analysis (Malhotra et al., 2015). Then there is also auto encoders, which are another powerful tool. They learn to compress normal data and can spot anomalies by looking at reconstruction errors. When they are trained only on normal data, they tend to struggle with reconstructing those unusual samples, which makes them great for detection (Sakurada & Yairi, 2014).

Recent innovations include variation auto encoders (VAEs) and generative adversarial networks (GANs). These models work by understanding the probability distribution of normal data and flagging low-probability instances as anomalies. They hold a lot of potential for handling complex, high-dimensional data, but they often demand significant computational power and careful tuning of hyper parameters (Zenati et al., 2018).

In the realm of cyber security, previous research has shed light on the effectiveness of various anomaly detection methods, revealing key insights into their strengths and weaknesses. Buczak & Guven (2016) conducted a thorough survey of machine learning techniques for intrusion detection in cyber security. They discovered that ensemble methods tend to outperform individual classifiers, especially when it comes to spotting subtle intrusions. Their findings indicated that while supervised methods can achieve higher precision, they often sacrifice recall when faced with new attack vectors.

Ahmed et al., (2016) took a closer look at statistical, machine learning, and deep learning approaches using the NSL-KDD dataset. They found that deep learning methods excelled in network intrusion detection, particularly for identifying complex attack patterns. However, they also pointed out the significant computational demands and the challenges in interpretability that come with these advanced methods compared to simpler alternatives.

Kwon et al. (2019) focused on time series anomaly detection methods tailored for industrial control systems. Their research revealed that context-aware approaches, which leverage domain knowledge, significantly outperformed more generic methods. They highlighted the critical role of domain-specific feature engineering and the benefits of integrating multiple detection paradigms.

Despite these advancements, there remains a notable gap in our understanding of how to effectively combine supervised, semi-supervised, and unsupervised methods. The goal is to develop robust detection systems that can tackle the full range of cyber threats while keeping false positives to a minimum.  

Methodology  

Data Collection   
Network traffic data was gathered from a medium-sized enterprise network with around 500 endpoints over a six-month span, from November 2023 to April 2024. The network setup featured standard components like firewalls, routers, switches, and servers, all organized in a hierarchical structure with separate subnets for different departments.  

To collect the data, a mix of NetFlow collectors placed at crucial network junctions and packet capture tools on the border routers were used. Various metrics were monitored every minute to evaluate network performance and security. Key metrics included traffic volume, which measured the total bytes sent and received, and connection metrics that tracked the number of new, active, and terminated connections.  Protocol distribution was also looked at to understand the traffic breakdown by protocol types like TCP, UDP, and ICMP. Port activity was analyzed by counting connections to common service ports, while error rates highlighted connection failures, retransmissions, and protocol errors. We examined packet characteristics as well, focusing on average packet size, packet count, and fragmentation rates.  

To improve our evaluation of the anomaly detection approach, two types of anomalous data were integrated into our analysis. Natural anomalies were real security incidents that occurred during the data collection period, verified and labeled by the organization's security team. On the other hand, controlled experiments involved simulated attacks in a controlled environment, including DDoS attacks, port scans, data exfiltration, and brute force authentication attempts. This thorough approach aimed to enhance our ability to detect and understand network anomalies.

Data Preprocessing  

A thorough preprocessing pipeline was set up to guarantee the quality of our data and its compatibility with different detection algorithms. The first step was tackling any missing values. For time series features, forward fill were used to keep things flowing smoothly over time, while for categorical features, we opted for mode imputation. To make sure all features contributed equally in distance-based algorithms, we applied min-max scaling to our numerical features, normalizing them to a range between [0, 1].  

To ensure everything was in sync, the time series data were resampled to consistent intervals—1 minute for network traffic and 5 minutes for system metrics—using appropriate interpolation methods. Some feature engineering was also engaged in to extract useful features for anomaly detection. This included statistical measures like moving averages and standard deviations, temporal indicators such as flags for the hour of the day and day of the week, and domain-specific features like the entropy of packet size distributions and combinations of flags.  

Lastly, to handle the complexity of high-dimensional datasets, Principal Component Analysis (PCA) was employed to reduce dimensionality while keeping 95% of the variance intact to ensure that the most crucial information was retained for the analysis.


Figure 1: Complete Data Preprocessing Pipeline

Figure 1 illustrates the complete data preprocessing pipeline, showing the flow from raw data through cleaning, feature engineering, normalization, and preparation for different detection algorithms. The pipeline branches to create appropriate inputs for supervised, semi-supervised, and unsupervised methods.

Exploratory Data Analysis

Before going into modeling the temporal dependencies in network traffic data, we took the time to perform a comprehensive exploratory data analysis. This step was essential for understanding the core characteristics of our dataset. We started with a univariate analysis of individual metrics, paying close attention to their statistical properties, including distributions, trends, and seasonal patterns. Interestingly, we discovered clear daily and weekly trends in total traffic volume, as shown in Figure 2. This foundational insight is vital for accurately modeling and forecasting future network behavior 
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 Figure 2: Total network traffic volume over a two-week period
Our analysis highlighted distinct daily patterns, with traffic volume peaking during business hours (from 9:00 AM to 5:00 PM) and significantly dropping overnight. We also noticed weekly trends, where traffic volumes dipped during the weekends. These patterns varied across different subnets; for instance, infrastructure subnets like server farms exhibited more stable traffic patterns compared to user-centric subnets 

Correlation Analysis 

The correlation analysis conducted uncovered some interesting relationships among network metrics across different time lags.
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 Figure 3: Heat map of Cross-Correlations between Network Metrics
The heat map provides a visual representation of how different network metrics relate to each other over a time lag ranging from 0 to 30 minutes. On the x-axis, you’ll find the time lag in minutes, while the y-axis lists pairs of metrics, like bandwidth compared to latency. The colors on the heat map indicate the strength of the correlation, with bright yellow showing a strong correlation (around 1.0) and deep black representing weak or no correlation (around 0.0).

From the key observations, it is clear that there’s a strong correlation between connection attempts and successful connections, especially in the 0–10 and 21–24 minute lag periods. This suggests that the number of connection attempts plays a crucial role in determining how many connections are successful, making this metric pair a solid indicator of service performance. Likewise, the correlation between packets sent and received remains high throughout the time lags, highlighting a close relationship where sending and receiving patterns respond to each other almost instantly.

On the flip side, the correlation between bandwidth and latency is more moderate and fluctuates, peaking at various times. This could indicate moments of network congestion, where higher bandwidth is associated with increased latency. The relationship between errors and re-transmits shows a moderate correlation as well, particularly noticeable between 5–15 and 22–27 minutes, suggesting that errors often lead to re-transmissions, though the timing can be inconsistent. Finally, the correlation between CPU load and network usage shows a delayed response, with stronger correlation values appearing after 20 minutes. This implies that resource usage patterns might lag behind network activity, possibly due to buffering or processing delays.

Spectral Analysis:

The figure below (4) presents power spectral density (PSD) plots for four key network metrics: Traffic Volume, Connection Rate, Protocol Distribution, and Error Rate, highlighting their periodic behaviors over time. In each subplot, the x-axis shows frequency in cycles per day, while the y-axis reflects the corresponding power. 
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Figure 4: Power spectral density plots for four key network metrics.
For Traffic Volume, there's a prominent peak at frequency 1, indicating a daily cycle, along with a secondary peak around 1/7, which points to a weekly cycle. This suggests that traffic volume follows a regular daily pattern, with some fluctuations throughout the week. When we look at the Connection Rate, a strong peak at frequency 24 reveals hourly periodicity and a smaller peak at frequency 1 hints at an additional daily cycle. This variation could be linked to session resets or monitoring activities that happen on an hourly basis.
The Protocol Distribution displays peaks at daily (1), weekly (1/7), and semi-daily (2) frequencies, showing that operational protocols are consistent and that usage patterns shift between business hours and off-hours. On the other hand, the Error Rate plot appears relatively flat and noisy, lacking significant periodic peaks, which suggests that error events happen randomly or sporadically without a clear dominant frequency.

Visualization of Known Anomalies: 

The time series plot showcasing network metrics from January to April 2023 highlights some interesting trends. Traffic Volume, shown in purple, generally trends upward, with a noticeable dip in mid-January, followed by steady growth from mid-February through April. 
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 Figure 5: Temporal Structure of Multivariate Network Traffic Metrics
This could suggest that network usage or load is on the rise. Connection Duration, represented in green, steadily climbs, hitting its peak in late March, which implies that users are either spending more time online or keeping their connections active for longer periods.

On the other hand, Packet Types, depicted in yellow, remains quite stable with only slight variations, indicating a consistent use of network protocols. However, Error Rates, illustrated in red, show a gradual uptick, especially from February onward, which might signal increasing strain or instability in the network infrastructure.

In summary, the analysis of these metrics points to a surge in network activity alongside rising error rates, highlighting the need for effective capacity management and performance tuning to maintain network reliability and efficiency.

Modeling Temporal Dependencies

Three different methods were explored and compared for modeling temporal dependencies in network traffic data: 

Vector Auto regression (VAR)

The Vector Auto regression (VAR) models of various orders to capture linear temporal dependencies between metrics were fitted. The VAR model of order p can be expressed as:
[image: image5.jpg]V.= A\ Y, + AY, ,+ ..+ AY,_ + U,



 

Where:

[image: image6.jpg]


is a vector of time series variables ay time t, Ai (for i= 1, 2, 3,…, p) are n×n matrices coefficients, Ut is a vector of error term at time t and P is the order of the VAR model, indicating how many past values are included in the model.

Model order selection was carried out using the Akaike Information Criterion (AIC) and the Schwarz Bayesian Information Criterion (BIC), along with cross-validation to ensure the accuracy of the selection process. 

Dynamic Bayesian Networks (DBNs)

The goal of implementing Dynamic Bayesian Networks (DBNs) was to effectively capture non-linear relationships and conditional dependencies within network metrics. Some standout features included learning the network structure using the K2 algorithm, which took into account expert knowledge constraints, and a discrete state representation that adapted based on the data distribution. These DBNs were crafted to handle temporal dependencies that could stretch up to 60 minutes, with parameter learning achieved through maximum likelihood estimation. This method led to a probabilistic model that clarified how metrics interacted over time, making it easier to infer expected network behavior based on past data.

Deep Learning Approach

At the same time, a hybrid deep learning architecture was put together, blending Convolutional Neural Networks (CNNs) with Long Short-Term Memory (LSTM) networks. The CNN layers were tasked with extracting features from related metrics, while the bidirectional LSTM layers captured temporal patterns from both directions. An attention mechanism was added to focus on the most relevant time steps, and dense layers were used for the final predictions. The model was trained to forecast the next state of each metric based on the previous 60 time steps (which is equivalent to 1 hour of data). The architecture is illustrated in Figure 6.
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Figure 6: Architecture of the deep learning model for analyzing temporal dependencies.
Figure 6 showcases an advanced deep learning architecture crafted to model the temporal dependencies found in network traffic data. This model processes a sequence of 60 time steps across 24 different network metrics, effectively representing a multivariate time series. At the front end, convolutional layers work to extract local patterns and reduce dimensionality. Following that, bidirectional LSTM layers come into play, capturing both past and future dependencies, which are essential for grasping the sequential behavior of cyber data. Attention mechanisms further refine the model's focus on the most pertinent time steps and features. In the end, dense (fully connected) layers bring together the learned representations to forecast the future state of each metric. This architecture is finely tuned to capture intricate temporal relationships, making it particularly effective for anomaly detection and forecasting in ever-changing network environments.

Anomaly Detection Techniques

A variety of anomaly detection techniques were explored and assessed within the realms of supervised, semi-supervised, and unsupervised learning.

Supervised Learning

For the supervised learning methods, three unique approaches were employed. The first was Random Forest, an ensemble method that combines multiple decision trees to effectively categorize instances as either normal or anomalous. In this case, a forest made up of 100 trees was used, relying on the entropy criterion to evaluate the quality of the splits.

Next up was the Gradient Boosting Machine (GBM), a boosting technique that builds trees one after the other. Each new tree aims to fix the mistakes made by the previous ones. For this implementation, XGBoost was opted for, setting the maximum tree depth to 6 and the learning rate at 0.1.

Finally, Long Short-Term Memory (LSTM) Networks was utilized, a type of recurrent neural network designed to capture long-term dependencies in sequential data. The setup featured a stacked LSTM architecture with two layers, each containing 64 units, followed by dense layers for the classification task. Together, these methods form a solid strategy for tackling classification challenges in supervised learning.

Semi-supervised Learning

Semi-supervised learning methods are great at making the most of both labeled and unlabeled data, finding a sweet spot between supervised and unsupervised learning. A standout technique is the One-Class SVM, which focuses solely on normal instances to create a boundary that defines what normal behavior looks like. Any anomalies are then identified as instances that stray outside this boundary. In our setup, a Radial Basis Function (RBF) kernel was used and set the parameter to 0.05.

The Semi-supervised Auto encoder was also looked into, which starts with pre-training on normal instances. After that, a classification layer was added and fine-tunes it using a small set of labeled anomalies. The architecture was designed symmetrically, with layers arranged as [input_dim, 64, 32, 16, 32, 64, input_dim].

Additionally, Label Propagation was dived into, a graph-based method that spreads labels from labeled to unlabeled instances based on their similarities. This was implemented using an RBF kernel and constructed a k-nearest neighbor’s graph.

In the experiments, all available normal instances were made use of, along with a small subset of labeled anomalies, specifically 10%, for training. This approach reflects real-world situations where labeled anomaly data is often scarce.

Unsupervised Learning

Unsupervised learning techniques shine when it comes to spotting anomalies since they do not depend on labeled training data. Instead, they focus on the inherent characteristics of the data itself. A well-known method in this realm is the Isolation Forest, which works as an ensemble technique that isolates observations by randomly picking features and split values. Anomalies stand out because they need fewer splits to be separated from the rest. In our approach, 100 base estimators were used and set the contamination parameter to 0.01.

The Local Outlier Factor (LOF) was also made use of, which takes a density-based approach. LOF looks at the local density of a point and compares it to the densities of its neighbors, flagging anomalies as points that show a significantly lower density. For our analysis, LOF was set to consider 20 neighbors and opted for the Euclidean distance metric.

On top of that, we implemented a Deep Auto encoder, a special kind of neural network that reconstructs inputs through a bottleneck layer. Anomalies are identified by looking at the reconstruction error, where higher errors suggest potential anomalies. The architecture of our deep auto encoder was designed as [input dim, 128, 64, 32, 16, 32, 64, 128, input dim], and was trained using mean squared error loss. Together, these methods significantly boost our ability to detect anomalies in datasets without needing labeled examples.

Integrated Approach  

At the heart of our methodology lies an integrated framework that brings together supervised, semi-supervised, and unsupervised techniques. This approach, as shown in Figure 7, is made up of three key components:
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Figure 7: Architecture of the integrated anomaly detection framework

Figure 7 illustrates the Architecture of the integrated anomaly detection framework, showing parallel processing paths for supervised, semi-supervised, and unsupervised methods, with outputs combined through an ensemble mechanism.

The text presents a thorough strategy for anomaly detection, utilizing base detectors, feature-specific processing, and an ensemble mechanism. Base detectors are individual anomaly detection algorithms that are trained and fine-tuned separately, allowing for optimized performance across various detection methods.

Feature-specific processing takes a tailored approach for different types of features, boosting detection capabilities. For instance, flow-based features are handled using sequential models like Long Short-Term Memory (LSTM), while statistical features are examined through tree-based methods and isolation techniques. Contextual features are addressed by models that take into account both temporal and environmental context, ensuring a deeper understanding of the data. The ensemble mechanism uses a meta-learning strategy to combine the outputs from the base detectors. Three distinct ensemble strategies were implemented: weighted voting, where outputs are modified based on past performance; stacking, which employs a meta-classifier trained on the outputs of the base detectors; and Bayesian model averaging, a probabilistic method that merges outputs according to their posterior probabilities. This ensemble mechanism is designed to evolve over time, dynamically adjusting weights in response to the performance of the detectors and the changing nature of the data.

Performance Evaluation Metrics  

To thoroughly assess how well the detection methods perform, a variety of metrics that focus on different aspects of anomaly detection were used.  The text describes several metrics for evaluating anomaly detection techniques, which can be grouped into four main categories: classification metrics, ranking metrics, time series-specific metrics, and operational metrics.  Classification metrics include precision, which tells the percentage of detected anomalies that are actually real; recall (or sensitivity), which measures how many of the actual anomalies were successfully detected; the F1-score, which is the harmonic mean of precision and recall; and the area under the ROC curve (AUC-ROC), which gauges the model's ability to distinguish between classes at various thresholds.  

Ranking metrics are all about the quality of the anomaly score rankings. Here, mean average precision (MAP) evaluates the overall ranking quality, while Average Precision at K (AP@k) looks at the precision of the top-k ranked instances.  

Time series-specific metrics tackle the unique challenges posed by temporal data. This includes detection delay, which is the time it takes from when an anomaly occurs to when it is detected, and the contextual false positive rate, which considers false positives in relation to the timing context.  

Operational metrics focus on the practical side of model performance, such as training time, which shows how much computational power is needed for training the model; inference time, which is how long it takes to process new observations; and adaptability, which reflects how well the model performs as data distributions change over time.  

All metrics were calculated using 5-fold cross-validation, and both mean values and standard deviations were reported to give a well-rounded view of how effective the methods are.

Case Study  

This case study set out to assess a network intrusion detection strategy within a simulated enterprise environment. It featured 150 client workstations, each with its own unique usage patterns, and 15 servers that handled various functions like web, application, database, and authentication services. The network setup includs routers, switches, and firewalls, along with typical enterprise services such as email, file sharing, and web applications.  

Over the course of 30 days, network flow data was gathered to examine both normal operations and simulated attack scenarios. The study looked at four different types of attacks: Distributed Denial of Service (DDoS) attacks that overwhelmed web services with heavy traffic, data exfiltration that involved the careful and prolonged extraction of sensitive information, lateral movement where attackers navigated through the network after an initial breach, and Advanced Persistent Threats (APTs) that were marked by multi-stage and stealthy compromises of targeted systems. These diverse attack patterns, ranging from obvious traffic spikes to more subtle deviations from normal behavior, created a solid foundation for testing how effective our anomaly detection methods were.

Implementation

Architecture

The implementation architecture of the system is divided into four main components. First up is the Data Collection Layer, which uses strategically placed network sensors throughout the infrastructure to gather flow data, system logs, and application metrics. Next, is the Preprocessing Layer, where both real-time and batch processing pipelines come into play to handle crucial tasks like data cleaning, normalization, and feature extraction. The Detection Layer boasts an integrated detection framework that supports multiple processing paths, each tailored for different detection methods. Lastly, the Analysis Layer is all about post-processing the detection results, which includes creating visualizations and generating alerts.
To boost its functionality, the system employs a solid mix of technologies. For efficient data streaming, it uses Apache Kafka, while Apache Spark takes care of distributed data processing. When it comes to deep learning model implementation, Tensor Flow and PyTorch are the go-to choices, along with Scikit-learn for traditional machine learning algorithms. Data storage and visualization are handled by Elastic search and Kibana, ensuring a thorough analysis and insightful results.

Experimental Setup  

A series of experiments were set up to evaluate how well different detection methods perform, including our integrated approach, across various attack scenarios. To ensure our evaluation was realistic, a time-based validation strategy was adopted. This meant training our models on initial data and then testing them on later periods, mimicking real-world deployment situations.  

For the supervised and semi-supervised methods, data from the first 15 days were utilized for training and then tested on the following 15 days. In the case of unsupervised methods, a baseline of normal behavior was established using the first 7 days of data and assessed detection performance during the remaining time.

Results and Discussion  

Model Performance Comparison  

In Table 1, how various detection methods stack up against each other can be seen, along with our combined approach, all evaluated across different attack scenarios.

Table 1: Performance Comparison of Anomaly Detection Methods

	Method
	Precision
	Recall
	F1-Score
	AUC-ROC
	Detection Delay (min)

	Supervised
	
	
	
	
	

	Random Forest
	0.87±0.04
	0.79±0.05
	0.83±0.03
	0.91±0.02
	6.3±2.1

	Gradient Boosting
	0.91±0.03
	0.76±0.04
	0.83±0.03
	0.93±0.02
	5.8±1.7

	LSTM
	0.84±0.05
	0.82±0.04
	0.83±0.03
	0.92±0.02
	4.2±1.5

	Semi-supervised
	
	
	
	
	

	One-Class SVM
	0.73±0.06
	0.85±0.04
	0.78±0.04
	0.87±0.03
	7.1±2.3

	Semi-supervised Autoencoder
	0.79±0.05
	0.83±0.04
	0.81±0.03
	0.89±0.03
	5.5±1.8

	Label Propagation
	0.75±0.06
	0.81±0.05
	0.78±0.04
	0.86±0.03
	8.2±2.4

	Unsupervised
	
	
	
	
	

	Isolation Forest
	0.68±0.07
	0.89±0.03
	0.77±0.04
	0.84±0.03
	3.8±1.4

	Local Outlier Factor
	0.65±0.08
	0.87±0.04
	0.74±0.05
	0.82±0.04
	4.6±1.6

	Deep Auto encoder
	0.71±0.06
	0.86±0.04
	0.78±0.04
	0.85±0.03
	4.1±1.5

	Integrated Approach
	
	
	
	
	

	Weighted Voting
	0.88±0.04
	0.89±0.03
	0.88±0.02
	0.94±0.02
	3.5±1.3

	Stacking
	0.92±0.03
	0.91±0.02
	0.91±0.02
	0.96±0.01
	3.2±1.1

	Bayesian Model Averaging
	0.90±0.03
	0.93±0.02
	0.91±0.02
	0.95±0.01
	2.9±1.0


The findings reveal several key insights about various detection methods. Supervised techniques showed impressive precision but struggled with recall, especially when it came to subtle attacks that weren’t well-represented in the training data. On the other hand, semi-supervised methods struck a nice balance between precision and recall, making them quite effective in situations where labeled anomalies are scarce. Unsupervised methods excelled in recall and detection speed, but they came with a downside: a higher rate of false positives, which led to lower precision scores.

Interestingly, the integrated approach, particularly when using Bayesian Model Averaging, outperformed individual methods across all evaluation metrics. This really emphasizes the power of blending different detection strategies. Additionally, the integrated approach boasted the shortest detection delay, with Bayesian Model Averaging cutting down detection time by as much as 54% compared to the slowest method. These results highlight the benefits of adopting a multifaceted strategy in anomaly detection. 

Figure 8 provides a visual comparison of the model’s performance metrics
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Figure 8: Performance Comparison of Anomaly Detection Models

Looking into the performance of various anomaly detection techniques has uncovered some valuable insights about their efficiency and accuracy. In the first chart, which tracks the average detection time for every 100,000 data points, we see that supervised methods like Random Forest and Gradient Boosting Machine (GBM) shine with low latency, clocking in at under a second—definitely a sign of high efficiency. On the other hand, Long Short-Term Memory (LSTM) networks take a bit longer, with detection times surpassing two seconds, thanks to their intricate architecture. Semi-supervised methods, such as Auto encoder and Label Propagation, show moderate detection times, while One-Class SVM impresses with its speed. Unsupervised methods like Local Outlier Factor (LOF) and Isolation Forest are quick on the draw but might sacrifice accuracy, leading to a higher number of false positives. The integrated approach strikes a nice balance with an average detection time of around 1.5 seconds, suggesting a solid trade-off between performance and computational cost.

Moving to the second chart, which assesses the F1 score across various attack types, it’s clear that the integrated approach consistently scores the highest, particularly excelling in identifying Web Attacks and Reconnaissance efforts. Supervised models also hold their ground, especially when it comes to detecting Denial of Service (DoS) and Brute Force attacks. Semi-supervised models do reasonably well with Distributed Denial of Service (DDoS) and Reconnaissance but don’t quite measure up to their supervised and integrated peers. Unsupervised models, on the other hand, show lower F1 scores across all attack types, highlighting their limitations in precision and recall when used on their own. All in all, the integrated approach stands out as the most effective method, showcasing superior detection quality across a range of attack vectors and proving its reliability in both overall metrics and specific scenarios.

When it comes to analyzing performance in anomaly detection techniques, it turns out that Random Forest and One-Class SVM really shine, especially in environments that require quick detection. The integrated approach is particularly noteworthy, as it proves to be the most accurate and dependable across various types of attacks, striking a great balance between speed and precision.

Attack-Specific Performance  

Figure 9 showcases how well different detection methods perform across various attack scenarios, highlighting some key trends in their effectiveness.  
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 Figure 9: Detection performance (F1-Score) of different methods across attack scenarios.
Diving into the performance of various anomaly detection techniques has uncovered some valuable insights about their efficiency and accuracy. In the first chart, which tracks the average detection time for every 100,000 data points, we see that supervised methods like Random Forest and Gradient Boosting Machine (GBM) shine with low latency, clocking in at under a second—definitely a sign of high efficiency. On the other hand, Long Short-Term Memory (LSTM) networks take a bit longer, with detection times surpassing two seconds, thanks to their intricate architecture. Semi-supervised methods, such as Auto encoder and Label Propagation, show moderate detection times, while One-Class SVM impresses with its speed. Unsupervised methods like Local Outlier Factor (LOF) and Isolation Forest are quick on their feet but might sacrifice accuracy, leading to a higher number of false positives. The integrated approach strikes a nice balance with an average detection time of around 1.5 seconds, suggesting a solid trade-off between performance and computational cost.

Moving to the second chart, which assesses the F1 score across various attack types, it is clear that the integrated approach consistently scores the highest, particularly excelling in identifying Web Attacks and Reconnaissance efforts. Supervised models also hold their ground, especially when it comes to detecting Denial of Service (DoS) and Brute Force attacks. Semi-supervised models do reasonably well with Distributed Denial of Service (DDoS) and Reconnaissance but do not quite measure up to their supervised and integrated peers. Unsupervised models tend to lag behind with lower F1 scores across all attack types, highlighting their limitations in precision and recall when used on their own. All in all, the integrated approach stands out as the most effective method, showcasing superior detection quality across a range of attack vectors and proving its reliability in both overall metrics and specific scenarios.

To sum it up, Random Forest and One-Class SVM really shine when it comes to detection speed, making them perfect for high-throughput settings. The integrated approach is particularly impressive, proving to be the most accurate and dependable across all types of attacks, striking a great balance between speed and precision.

False Positive Analysis  

When it comes to deploying systems in real-world operations, the false positive rate is a key factor to consider. Figure 10 illustrates the false positive rates for various methods alongside their respective alert volumes. 
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Figure 10: False positive rates and daily alert volumes for different detection methods.

Figure 10 highlights two key metrics for evaluating anomaly detection techniques in cyber security. The bar graph showcases the False Positive Rate (FPR), which reflects the percentage of harmless events mistakenly flagged as threats. A lower FPR is a sign of better accuracy, helping to cut down on unnecessary alerts and lessen alert fatigue for cyber security teams. The Integrated Approach shines here, boasting the lowest FPR at about 0.08, making it the most accurate method. On the flip side, the Local Outlier Factor (LOF) and Isolation Forest show much higher FPRs of around 0.30 and 0.28, respectively, indicating they tend to trigger more false alarms. Supervised methods like Gradient Boosting Machine (GBM) and Random Forest, along with semi-supervised models such as the Semi-supervised Auto encoder, perform moderately well, with FPRs ranging from about 0.10 to 0.16.

The line graph adds to this information by showing the average daily alert volume produced by each detection method. A higher alert volume can burden analysts and potentially slow down effective threat responses. Unsupervised methods, like LOF and Isolation Forest, generate the highest alert volume, averaging between 450 to 500 alerts daily, which correspond with their higher FPR. In contrast, the Integrated Approach not only achieves the lowest FPR but also keeps its alert volume low at around 120 alerts per day, indicating it prioritizes alerts effectively. Supervised methods generally produce moderate alert volumes, ranging from 200 to 250 alerts daily, reflecting a more focused detection capability.

In conclusion, the Integrated Approach emerges as the most effective method, delivering both the lowest false positive rate and minimal daily alert volume. While unsupervised models can detect more anomalies, they struggle with alert overload and lower precision, making them less ideal for practical use.

Computational Efficiency  

Table 2 outlines the computational needs for various detection methods, which is a crucial factor to consider for real-time implementation 

Table2: Computational Requirements of Detection Methods

	Method
	Training Time (min)
	Inference Time (ms/sample)
	Memory Usage (GB)

	Random Forest
	18.5
	0.8
	3.2

	Gradient Boosting
	35.7
	1.2
	2.8

	LSTM
	124.3
	3.5
	4.6

	One-Class SVM
	42.8
	1.4
	2.2

	Semi-supervised Autoencoder
	87.5
	2.8
	3.9

	Isolation Forest
	9.3
	0.6
	1.8

	Deep Autoencoder
	76.2
	2.3
	3.7

	Integrated Approach (Stacking)
	156.4
	4.7
	6.2

	Integrated Approach (Bayesian)
	142.8
	3.9
	5.8


The integrated approach did come with higher computational costs, especially during the training phase. However, when it came to inference times, they stayed within acceptable limits for real-time deployment, with Bayesian Model Averaging processing each sample in less than 4 milliseconds. By using optimization techniques like parallel processing and model pruning, we managed to cut down the memory footprint of the integrated approach by about 25% compared to a more straightforward implementation.

Conclusion

Summary of Findings

This research underscores the considerable advantages of merging supervised, semi-supervised, and unsupervised learning methods for detecting anomalies in cyber security. The findings show that each detection method has its unique strengths and weaknesses, which can vary based on the type of attack and the characteristics of the data. Supervised methods shine when there is plenty of representative labeled data available, while unsupervised methods are great at spotting new anomalies. Semi-supervised approaches strike a useful balance between the two.

The integrated approach consistently outperforms individual methods across all metrics, with particularly impressive improvements in complex attack scenarios. The Bayesian Model Averaging ensemble is particularly noteworthy for its strong performance, achieving a 37% reduction in false positives and a 24% boost in detection accuracy.

Even though the integrated approach requires significant computational resources, the performance improvements make it worthwhile, especially in operational settings where false positives can create a heavy workload for analysts. Optimizations techniques help ensure that this integrated method remains practical for real-time use in enterprise environments.

Additionally, effective anomaly detection should consider not just technical performance metrics but also operational factors like interpretability, adaptability, and smooth integration with existing security workflows.

Future Directions 

The future of research in detection frameworks points to several exciting areas for growth. One promising path is creating adaptive learning systems that can automatically adjust to shifts in data patterns and attack strategies, reducing the need for constant manual updates. Another crucial area is improving the interpretability of complex models in explainable anomaly detection, which would give security analysts valuable insights into the anomalies they uncover.

Moreover, exploring transfer learning techniques could help apply models trained in data-rich settings to situations where labeled data is scarce. There is also a suggestion to integrate multimodal detection systems that combine time series data with other types of information, like text logs and user behavior, offering a more holistic approach to identifying anomalies across various data sources.

Federated learning stands out as a way to build collaborative detection frameworks, allowing organizations to share knowledge while keeping their data private, thereby boosting collective defense efforts. Additionally, enhancing adversarial resilience is essential, as it involves fortifying detection models against specific attacks aimed at machine learning systems, such as evasion and poisoning attempts. Finally, the importance of fostering human-AI collaboration is underscored, aiming to create interactive systems that blend machine learning strengths with human expertise to improve detection accuracy and response effectiveness.

Practical Implications

The research sheds light on some key takeaways for organizations looking to implement anomaly detection systems in cyber security. First off, putting money into integrated detection methods can really pay off by boosting detection capabilities and reducing false positives, which makes the extra complexity and computational demands worth it. Secondly, using a variety of data collection methods that capture different aspects of system and network behavior is essential for effective anomaly detection, especially when facing sophisticated attacks that can show up in various forms.

Moreover, it is crucial for organizations to regularly assess and tweak their detection systems to keep them effective against ever-evolving threats and shifting operational landscapes. Additionally, linking detection systems with broader security workflows and incident response processes can really enhance their operational value, turning technical insights into practical security improvements. As cyber threats grow more advanced, having effective anomaly detection is a key to keeping organizations secure. By embracing multiple detection strategies highlighted in this research, organizations can significantly boost their ability to spot and respond to emerging threats before they lead to serious damage.
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