Linear Programming for Resource Allocation and Profit Maximization in Furniture Production
Abstract
This case study explores the use of linear programming, specifically the simplex method, to optimize the production process in a furniture manufacturing company. The main objective is to maximize profits by identifying the most effective production mix of items such as dining tables, chairs, sofa sets, dressing tables, shoe racks, and beds, all while adhering to constraints on materials like wood, fabric, paint, Sun mica, stuffing, accessories, and labor costs.
The study utilizes Excel Solver to apply linear programming and solve the problem of profit maximization. By formulating the objective function and constraints within Solver, it computes the best possible production quantities for each product, ensuring maximum profitability while staying within resource limits.
The results indicate an optimal solution with the following production quantities: 0 dining tables, 0 chairs, 0 sofa sets, 3.70 dressing tables, 107.40 shoe racks, and 4.81 beds. This production mix yields a maximum profit of ₹2,42,777.78.The findings reveal the optimal number of units to produce for each item, providing valuable insights for businesses on how to efficiently allocate resources and achieve financial targets. 
Overall, the case study highlights the power of linear programming, facilitated by Excel Solver, in helping businesses make informed decisions that lead to increased profit margins in environments with limited resources.
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Introduction:
A linear objective function subject to linear constraints can be maximized or minimized using linear programming, a potent mathematical technique for optimization issues.
The concept was developed by George B. Dantzig in 1947, and it has since become integral to operations research and economics, especially in resource allocation and scheduling.
A key advantage of linear programming is its flexibility, as exemplified by the Simplex algorithm, which efficiently solves linear programming problems even in complex scenarios and extensive applications
In this study, we apply linear programming for furniture production, where the focus is on determining the optimal quantities of dining tables, chairs, sofa sets, dressing tables, shoe racks and beds to produce for maximum profit. The furniture production operates under various constraints, including demand, material quantity & labor availability.
General Form of a Linear Programming Model
The linear programming problem is generally expressed as:
Maximize (or Minimize) Z = c1x1 + c2x2 + … + cnxn (objective function)         …(1.1)          Subject to the constraints:
a11x1 + a12x2 + … + a1nxn (<,=,>) b1
a21x1 + a22x2 + … + a2nxn (<,=,>) b2
 ….       ….       ….    ….      ….    
 am1x1 + am2x2 + … + amnxn (<,=,>)bm                                                                                     … (1.2)

And non-negative restrictions: xj ≥ 0 for j = 1, 2, …, n
Where aij’s, bi, s, and cj’s are constants and xj’s are variables.
Any of the 3 indications <, = and > may be present in the circumstances specified by (1.2). The standard form of a linear programming problem for the simplex technique is as follows: 
(a) All constraints are expressed as equations using excess and slack variables.
(b) For each constraints all bi > 0, if any bi is negative then multiply the corresponding constraint by − 1.
 (c) Always remember, the problem must be of maximization type, if not, convert it in maximization type by multiplying the objective function by −1.
This is one way to formulate the linear programming problem of n variables and m constraints using slack and excess variables: 


Optimize 
Z= c1 x1 + c2 x2 + ... + cnxn + 0.s1 + 0.s2 +…. + 0.s m (Objective Function)                       
                                                                                                                                    …(1.3) 
Subject to the constraints
a11x1 + a12x2 + ....+ a1nxn + s1 = b1
a21x1 + a22x2 +.... + a2nxn + s2 = b2
                                    ….       ….     ….    ….       ….
                                    .....       .....    ....     .....         ....
                       am1x1 + am2x2 +.... + amnxn + sm =bm                                        (1.4)
and non – negative restrictions
xj >0,  si > 0,  j = 1, 2....n,  i = 1, 2...,m
Where aij’s, bi’s and cj’s are constants and xj’s and si’s are variables          
Review of Literature
Linear programming (LP) has been extensively used in optimization problems across industries. Dantzig’s pioneering work on the Simplex Method laid the foundation for LP applications in real-world resource allocation and profit maximization. Research by Sherali and Yao (2007) highlighted the role of LP in supply chain design for profit maximization, while Patidar and Choudhary emphasized its utility in small-scale industries for optimizing resource use. The application of LP in furniture production remains underexplored but offers significant potential, as suggested by Schulze’s works on operational efficiency. Studies have demonstrated that LP not only aids decision-making but also ensures sustainable use of resources. 
The application of Linear Programming (LP) in manufacturing has been a significant focus of research, especially concerning its use in profit maximization and resource optimization. This literature review highlights key studies related to the application of linear programming in production optimization, particularly in the furniture manufacturing industry, and the role of Excel Solver in solving LP problems.
 Taha (2017) explains the fundamental principles of linear programming and its applications in business, especially for optimizing manufacturing processes. He discusses how LP helps businesses allocate resources efficiently, leading to cost savings and maximized profits. Linear programming has been successfully applied in industries such as textiles, automotive, and furniture manufacturing to optimize production and profit.
Charnes and Cooper (1950) laid the foundation for LP's role in business and industry by demonstrating how it can be used to allocate resources effectively and maximize profit. Their seminal work set the stage for further research in operational research and the practical applications of LP.
Gass (2005) highlighted the role of LP in production optimization and cost reduction across various industries. His work emphasized how LP allows businesses to determine the most efficient product mix while considering the constraints of limited resources. In the context of furniture production, LP is used to determine optimal quantities of items such as tables, chairs, and sofas to maximize profit while respecting material and labor constraints.
Winston (2004) further examined LP's role in decision-making processes in industries where profit maximization is a primary goal. His research underscores the importance of formulating LP models with clear objectives (profit maximization) and constraints (materials, labor costs) to derive optimal production strategies.
According to Gurobi (2018), Excel Solver has become a popular tool in businesses due to its simplicity, cost-effectiveness, and ability to handle LP problems of moderate complexity. The software enables users to input constraints and objective functions and quickly find the optimal solution to the problem at hand.
Meyer (2014) supports this, stating that Excel Solver is particularly effective in small to medium-sized enterprises that lack access to more complex optimization software. Meyer’s study found that Solver could handle multiple constraints and objectives, making it well-suited for production optimization problems in industries such as furniture manufacturing.
Srinivas and Rao (2019) demonstrated the use of LP in optimizing the production mix of different furniture products, including tables, chairs, and sofas, while considering constraints such as raw materials, labor, and production capacity. They concluded that LP models can lead to improved production efficiency and higher profits by providing optimal production schedules. Soni and Jain (2020) focused on applying LP in the furniture industry to minimize material wastage and optimize resource allocation. Their study showed that LP could effectively reduce production costs by ensuring that resources were used efficiently, thus contributing to higher profit margins.
Sasongko Tri Utom, Wisnu Mawardi (2024) this study aims to see the level of efficiency produced by coffee shops with data envelopment analysis (DEA) techniques. This analysis uses input variables, namely labor costs, raw material costs, overall capital, and the amount of labor, and output variables, namely gross profit, and net profit. 
The literature reviewed demonstrates that linear programming is a powerful tool for solving optimization problems in production, particularly for maximizing profit in manufacturing settings. Excel Solver, as an accessible tool for solving LP problems, has made it easier for small and medium-sized businesses to optimize their operations. Studies in the furniture manufacturing sector have shown that LP models are highly effective in determining the optimal production mix and achieving cost efficiencies. The growing body of literature suggests that linear programming will continue to be an essential decision-making tool for businesses aiming to optimize their production processes and increase profitability.
Research Methodology
This study employs linear programming to develop an optimal production plan for a furniture shop. Using the Simplex Method, the problem is modeled with an objective function to maximize profit while considering constraints such as material availability and labor capacity. Data on production requirements for six furniture types—dining tables, chairs, sofa sets, dressing tables, shoe racks, and beds—were collected from the furniture shop's operational records.
The model formulation involved defining decision variables for each furniture type and constructing the objective function based on profit contributions. Constraints were introduced for resources like wood, fabric, paint, sun mica, stuffing, accessories, and labor hours. Non-negativity constraints ensured feasibility. The model was solved using Excel to derive the optimal production mix.
The research design is quantitative, focusing on numerical optimization. Results are interpreted to provide actionable insights for efficient resource utilization and profit maximization. The methodology ensures reliability through precise mathematical modeling and validation using real data.
Problem Assumption
Six main types of furniture to be produced are as follows: 
· Dining tables, chairs, sofa sets, dressing tables, shoe racks and beds.
· There is limited availability of key materials like wood, fabric, paint, sun mica,      stuffing, accessories, and labor.
· The production of each item requires specific amounts of these materials.
· The goal is to allocate resources efficiently to maximize profit while meeting all material and production constraints.


Table 1. Production requirements for six furniture types
	
	                                               PRODUCTS
	

	
	
	
	Dining Table (unit)
	Chairs (unit)
	Sofa Set (unit)
	Dressing Table (unit)
	Shoe Rack (unit)
	Bed (unit)
	Total Availability

	Wood (cubic feet)
	15
	6
	12
	8
	10
	20
	1200 cubic feet

	Fabric (square feet)
	0
	8
	40
	25
	15
	20
	1800 square feet

	Paint (liters)
	4
	2
	3
	3
	2
	5
	250 liters

	Sun mica (sheets)
	3
	1
	2
	2
	1
	3
	350 sheets

	Stuffing (kilograms)
	8
	3
	4
	5
	2
	6
	600 kilograms

	Accessories (units)
	5
	2
	3
	4
	3
	2
	400 units

	Labor Cost per Unit (hours)
	10
	4
	8
	6
	5
	12
	1500 hours

	Profit per Unit (Rupees)
	1500
	600
	2500
	3000
	2000
	3500
	


                                                                                                                                                                                                                                                       Model Formulation
Let: 
 x1 = Number of dining tables produced                                                                                                                                            
 x2 = Number of chairs produced
 x3 = Number of sofa sets produced
 x4 = Number of dressing tables produced
 x5 = Number of shoe racks produced
 x6 = Number of beds produced
Objective Function:
Maximize Z = 1500x1 + 600x2 + 2500x3 + 3000x4 + 2000x5 + 3500x6
Subject to Constraints:
1. Wood Constraint:
15x1 + 6x2 + 12x3 + 8x4 + 10x5 + 20x6 ≤ 1200
2. Fabric Constraint:
0 x1 + 8x2 + 40x3 + 25x4 + 15x5 + 20x6 ≤ 1800
3. Paint Constraint:
4x1 + 2x2 + 3x3 + 3x4 + 2x5 + 5x6 ≤ 250
4. Sun mica Constraint:
3x1 + x2 + 2x3 + 2x4 + x5 + 3x6 ≤ 350
5. Stuffing Constraint:
8x1 + 3x2 + 4x3 + 5x4 + 2x5 + 6x6 ≤ 600
6. Accessories Constraint:
5x1 + 2x2 + 3x3 + 4x4 + 3x5 + 2x6 ≤ 400
7. Labor Cost Constraint:
10x1 + 4x2 + 8x3 + 6x4 + 5x5 + 12x6 ≤ 1500
8. Non-Negativity Constraints:
                                 x1, x2, x3, x4 , x5, x6  ≥ 0
Interpretation of Results
The optimal production mix derived from the model indicates the quantities of each product that should be produced to maximize profits while staying within material constraints. The results will guide the furniture production in resource allocation, ensuring profitability and efficient use of materials.
Result and Discussion
The linear programming model, formulated with the objective of maximizing profit under multiple resource constraints, was solved using Excel Solver. The solution yielded the following optimal production plan:
Dining Tables (x₁) = 0 units
Chairs (x₂) = 0 units
Sofa Sets (x₃) = 0 units
Dressing Tables (x₄) = 3.70 units
Shoe Racks (x₅) = 107.40 units
Beds (x₆) = 4.81 units
This specific production combination results in a maximum achievable profit of ₹2,42,777.78, demonstrating that not all products contribute equally to the profit when constrained by resources like wood, fabric, paint, stuffing, sun mica, accessories, and labor hours.
The results show a clear trend: focusing production on shoe racks, dressing tables, and beds is significantly more profitable than producing dining tables, chairs, or sofa sets. This can be attributed to the favorable profit-to-resource ratio of the selected products. 
For example:
· Shoe racks require moderate material and labor input but offer a relatively high profit margin, making them the most preferred item in the optimal mix.
· Dressing tables and beds, though requiring more resources, yield a high per-unit profit and can still be accommodated within the overall constraints.
· On the other hand, products like dining tables, chairs, and sofa sets were entirely excluded in the optimal plan. This indicates that, despite possibly being in demand, their production would not be resource-efficient under the current constraints and would reduce the overall profitability.
Resource Utilization Insights
Wood, fabric, and labor hours were identified as limiting constraints, becoming fully utilized in the optimal solution.
Accessories and paint were utilized effectively, though not exhausted entirely, suggesting some flexibility remains in those areas.
This resource analysis helps identify which materials are bottlenecks and can guide decisions on either reallocating stock or procuring additional resources in future production cycles.
Implications
The results strongly advocate for strategic prioritization in manufacturing based on quantitative models.
Furniture producers can improve profitability and reduce resource wastage by adopting linear programming-based production planning.
These insights are particularly beneficial for small to medium enterprises that operate under tight resource constraints and are looking to maximize return on investment without expanding resource availability.
Conclusion
The linear programming model, solved using Excel, demonstrates the effectiveness of optimization techniques in maximizing profitability in furniture production. The optimal solution highlights that focusing on the production of shoe racks, dressing tables, and beds yields the highest profit, with a maximum value of ₹2,42,777.78 while adhering to material and labour constraints. This study confirms that linear programming is a practical and powerful tool for resource allocation and decision-making in manufacturing. The results emphasize the importance of strategic production planning to achieve profitability and provide a framework for further optimization in similar industries.
Future Scope
Future research can explore dynamic models incorporating market demand fluctuations and seasonal variations. Expanding the scope to include cost analysis for material procurement and logistics can enhance the model's applicability. Automating LP implementation in production processes could further optimize resource use and improve efficiency. The methodology can also be adapted for other industries facing similar challenges.
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