
AN EXTENSION OF TYMOCZKO CODES TO ROW STRICT YOUNG TABLEAUX

Abstract. In this article, we extend theories of Tymoczko codes on standard young tableaux to row
strict tableau of any given shape λ, by investigating the algorithm through which permutations were
associated to a set of row-strict tableaux rst. Via this algorithm, we attach a code to each rst and give
some combinatorial interpretations of these codes and establish some connections between some existing
results on rst and the codes.
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1. Introduction

Let (λi)
k
i=1 ( n ∈ N) be a sequence of positive integers such that λ1 ≥ λ2 ≥ · · · ≥ λk and λ1+λ2+· · ·+λk =

n. In other words, we have a partition of n denoted by λ ⊢ n.To this partition λ, there is an associated
diagram called Young diagram Yλ, composed of left justi�ed cells (boxes) in such a way that the number
of cells in ith−row is λi. A �lling of Yλ with a ∈ [n] such that entries strictly increase along rows from
left to right is called row-strict Young tableaux, and column-strict if its entries are increasing from top to
bottom in each column. We call it standard Young tableau of shape λ if it is both row-strict and column
-strict. Readers are referred to [4] for basic information on Young tableaux.
These objects have been widely used in representation theory, as explored in [8],[3],[9],[7], [11],[9] and [10]
to do exploit in representation theory, algebraic topology, geometry and combinatorics.

Tymoczko in [10] presented an algorithm that attaches a permutation to each row-strict tableaux (rst)
of shape λ in an e�ort to explore the relationships between various combinatorial and geometrical aspects
of Springer �bers. Each standard tableau of any given shape λ in [6] has a code assigned to it using the
algorithm in [10], which we refer to as Tymoczko codes. We examine the combinatorial characteristics
of these codes, denoted by cod(T), and draw parallels between our combinatorial interpretations of these
codes and some of the �ndings in [11]. Our �ndings in [6] are extended here to row strict tableaux of any
shape.

Partitions of integers and some fundamental concepts in the symmetric group (Sn) are covered in section
two as they pertain to our discussion. Using the dimension pairings of row-strict tableaux as described in
[11], we present and examine certain combinatorial features of the Tymoczko code of row-strict tableaux
in section three. Our key �ndings are in Section 4.

2. Symmetric Group and Integer Partitions

2.1. The set S = {s1, s2, · · · , sn−1} of adjacent transpositions si, (1 ≤ i ≤ n − 1), which swaps i and
i+ 1 and �xes other members of [n] subject to the relations:, yields the symmetric group Sn.

• s2i = e, ∀ 1 ≤ i ≤ n− 1; (involution)
• sisj = sjsi, if |i− j| ≥ 2; (commutation)
• sisi+1si = si+1sisi+1, 1 ≤ i ≤ n− 1 (braid relation).

In order to write w as a product of k elements of S, the length ℓ(w) of w must be the smallest integer
k ≥ 0, meaning that w = sc1sc2 · · · sck ∈ Sn. We write ℓ(w) = k and state that k is the length of w. This
equation is known as the reduced decomposition of w. The string of subscripts c1c2 · · · ck is the word ω of
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w, although it is not unique.
If each pre�x has at least as many ai as ai+1., then the string of integers ai > 0 is a lattice word. A word
that is the reversal of a lattice is called a Yamanouchi word. Take the string 11122121, which is a lattice
word, and the Yamanouchi word
12122111.

2.2. A partial order de�ned on Sn, known as the Bruhat order is ≤. For every σ, τ ∈ Sn, we say σ ≤ τ in
Bruhat order if τ can be produced from σ via a series of transpositions. Stated di�erently, σ ≤ τ is used
if and only if the reduced word of σ is a subword of the reduced word of τ .
Since s1s2 is a subword of s1s2s3s1s2, for example, if τ = s1s2s3s1s2 and σ = s1s2, then σ ≤ τ in the
Bruhat order.

2.3.
A partition λ of n ∈ N, represented by λ ⊢ n, is a sequence λ = (λi)

k
i=1, λi ∈ N so that λ1 ≥ λ2 ≥ ... ≥ λk

and
∑k

i=1 λi = n. The term "part of λ" refers to each λi. ℓ(λ) represents the length of λ, which is the
number of such λi, whereas |λ| = λ1 + λ2 + λ3 + ...+ λk represents the sum of parts, which is the weight
of λ.Assuming n = 6, λ = (3, 2, 1) is one of the partitions of 6, ℓ(λ) = 3, and |λ| = 6. P (n) represents the
set of all partitions of n, and P represents the set of partitions.
To prevent parts from being repeated in a partition λ, we employ indices to record the multiplicity of
parts in that partition. It follows that λ = λa1

1 , λa2
2 , · · · , λak

k ,If λi, (1 ≤ i ≤ k) occurs ai times in λ, then
ai is the multiplicity of λi. Consider the following example: n = 5 and λ = (2, 1, 1, 1) = (2, 13). P (5),
therefore,P (5) = {(5), (4, 1), (3, 2), (3, 12), (22, 1), (2, 13)(15)}
A number of literatures on partition theories are available for consultation, including [1], [2], and [5].

Remark 2.1. Similar to partition of integers, is a sequence (ai)
k
i=1 of nonnegative integers such that∑k

i=1 ai = n, called the composition of non-negative integer n.
For example, let n = 4, the following are all compositions of 4

(4), (3, 1), (1, 3), (2, 2), (2, 1, 1), (1, 2, 1), (1, 1, 2), (1, 1, 1, 1).

We consider (1, 3) and (3, 1) as di�erent composition but they are the same as partition.

2.4. Given a partition λ of n ∈ N, there exists an associated diagram called Young diagram (Yλ) which
gives a graphical way of viewing λ. It is a collection of cells (boxes) arranged in left justi�ed rows in a
way that the number of boxes in ith row equals λi, and is weakly decreasing from top to bottom.
For example, the Young diagram of shape λ = (3, 2, 1) is shown in table 1 .

Table 1. Young diagram of shape λ = 3, 2, 1

We use matrix notation to label each cell of Yλ, and we write (i, j) to indicate a cell in the ith row and
jth columns of Yλ.
The number of cells in each column (column length) denoted by λ′

i is equally a partition of n called the
conjugate of λ , denoted by λ′. In a case where λ = λ′ then λ is said to be self conjugate.
Suppose λ and µ are partitions of n and m respectively, such that n > m. Then Yµ is said to be a sub-
Young diagram of Yλ,and we write Yµ ⊂ Yλ if µ ⊂ λ. In other words, Yµ ⊂ Yλ, if µ is contained in
λ. The Fillings of the cells of a Young diagram with numbers from [n] = {1, 2, 3, · · · , n} , results to a
combinatorial objects called Young tableaux which turn out to be strong tools in representation theory,
algebraic combinatorics, geometry and topology.
There are n! Young tableaux of shape λ. For instance, let n = 2 and λ = 2, 1, the list of all possible Young
tableaux of the corresponding shape are displayed in table 2.



Table 2. All possible Young tableaux of shape λ = 2, 1

1 2

3

1 3

2

2 3

1

2 1

3

3 1

2

3 2

1

The �lling of Yλ is called row strict tableau (rst) if the �lling is such that the entries strictly increase from
left to right along the row,with no condition on the columns.

2 3 6

1 4

5

Table 3. row strict tableau

We shall denote by (rst)λ the collection of all row strict tableaux of shape λ , the size of (rst)λ is given
by the multinomial coe�cient. That is,

#(rst)λ =
n!∏k

i=1 λi!

For instance, let n = 5 and λ = (2, 2, 1), #(rst)λ = 5!
2!××2!×1! = 30.

If the �lling of Young diagram of shape λ is such that the integers from 1 to n appears exactly once and that
its entries are increasing across each row and column, such a �lling is call standard Young tableaux (SYT).
We denote by STλ the collection of all standard Young tableaux of shape λ. One of the remarkable results

1 2 5

3 4

6

Table 4. standard tableau

about standard Young tableaux, is the hook-length formula. This is useful in counting the number of
all possible Standard Young tableaux of any given shape. Let λ be a partition of n > 0 and Yλ a Young
diagram of shape λ, then the number #STλ of standard Young tableaux of shape λ is obtained by.

#STλ =
n!∏

(i,j)∈λ hi,j
. (2.1)

Where hi,j is the number of cells directly to the right and directly bellow the cell in (i, j)th position
including the cell.

Remark 2.2. Thus far, it is obvious that STλ ⊂ (rst)λ, hence, we shall be writing (rst)λ\STλ when our
attention is on those row-strict tableaux that are not standard.

3. Dimension pairs and Tymoczko Code for Row-Strict Tableaux

In this section, we brie�y discuss the algorithm discussed in [11] and [9], where the dimension pairs and
permutations were attached to a set of row-strict tableau respectively.
Following [11], we have de�nition 3.1.

De�nition 3.1. Let λ ⊢ n and T ∈(rst)λ, a pair of entries (a, b) in T is said to be a dimension pair of T if
it satis�es all the following conditions;

(1) a < b
(2) ȷbȷ is below ȷaȷ either in the same column, or located anywhere at the left of a
(3) If ȷaȷ is immediately bordered on the right by ȷcȷ then b ≤ c.



We denote the set of all such pairs of T by (DP )T .

Example 3.2. Let n = 6 with λ = (3, 2, 1), consider

T =

1 4 5

3 6

2

(DP)T = {(1, 2), (1, 3), (5, 6)}

Remark 3.3. There is a unique T ∈ (rst)λ referred to as base �lling in [11] . This �lling is such that, they
decrease from top to bottom for each column. For example, let n = 6 and λ = (3, 2, 1) then the base �lling
of shape λ is

T =

3 5 6

2 4

1 .

The set of dimension pair of base �lling of any shape λ is usually empty.

Let T ∈ (rst)λ, we denote by Tb, b ∈ N a tableau obtained by deleting all entries c > b in T. For instance,
let n = 6 and λ = (3, 2, 1) with

T =

3 4 5

1 2

6

then

T3 =

3

1 2

Following [9] we have de�nition 3.4.

De�nition 3.4. Let T ∈ (rst)λ, we denote by db the number of rows above the row containing b in T b

which are of equal length plus the total number of rows in T b which are of greater length (either above or
below) than the row containing b and wb denote the increasing product of simple transpositions of length
b.
If db = 0 then wb = e is the identity. Then the Schubert point associated to T is a permutation in Sn,
denoted by wT and de�ned as. wT = wnwn−1wn−2 · · ·w2 [10]

Remark 3.5. If T is a standard Young tableaux, the procedures in the above de�nition become easier as
we only consider the number of rows strictly above b, since it not possible to have any row (either of less,
equal of greater length) below b in Tb.

Example 3.6. Let n = 6, and λ = (3, 2, 1) with

T =

3 4 5

1 2

6

d1 = 0, d2 = 0, d3 = 1, d4 = 0, d5 = 0, d6 = 2.

The Shubert point wT associated to the above row-strict tableau according to Tymoczko and Precup in
[9] is wT = s4s5s2.
Arranging the values of the d′bs, 1 ≤ b ≤ 6 in example 3.6 in a natural order of b′s we have (d1, d2 · · · d6) =
(0, 0, 1, 0, 0, 2). This we call Tymoczko code (denoted by cod(T)) for the Schubert point wT . We equally
attach a numerical value to each row-strict tableau by adding up all the coordinates of cod(T), and call it
the weight of T denoted it by wt(T). For instance, the weight of T in example 3.6 is 3.

Remark 3.7. We like to bring to the notice of the reader at this juncture that:

i) For any T ∈ (rst)λ, l(wT ) = wt(T ) = #(DP )T .



ii) If T is a standard Young tableau of shape λ = (λ1, λ2, · · ·λk), then
λi = #{db : db = i − 1, 1 ≤ i ≤ k, 1 ≤ b ≤ n} and we say cod(T) encode at least one of the
partitions λ ∈ P (n).

4. Some Combinatorial Properties of Tymoczko Codes for Row-Strict Tableaux

In this section, we itemize our results with their statements of proof.

Proposition 4.1. For λ = 1n the weight wt(T ) of T ∈ (rst)λ respects the Bruhat order on Sn, hence
it preserves the structure the bruhat graph of Sn. In other words, let wT , w′

T ∈ Sn respectively be the
Schubert points of T, T ′ ∈(rst)λ with wt(T ) and wt(T ′) the weights of T and T′ then, wt(T ) ≤ wt(T ′) if
and only if wT ≤ w′

T .

Proof. We know that,for n ∈ N, if λ = 1n, then #(rst)λ = n! which is the same as the order of Sn.
Now, Suppose wT ≤ w′

T in Bruhat order, we need to show that wt(T ) ≤ wt(T ′).
We recall from remark 3.7 that ℓ(wT ) = wt(T ) for any Schubert point wT ∈ Sn, (where ℓ(wT ) is the length
of wT ). By implication ℓ(wT ) ≤ ℓ(w′

T ) implies wt(T ) ≤ wt(T ′).
Conversely, we assume wt(T ) ≤ wt(T ′). Since ℓ(wT ) = wt(T ), then ℓ(wT ) ≤ ℓ(w′

T ) implies wT ≤ w′
T . □

Example 4.2. Let n = 3 and λ = 13, in this case, there exist six row strict-tableaux which we display in
the table below.

T ∈ (rst)λ cod(T) wt(T) wT

1

2

3 (0,1,2) 3 s1s2s1

1

3

2 (0,1,1) 2 s2s1

2

1

3 (0,0,2) 2 s1s2

2

3

1 (0,0,1) 1 s2

3

1

2 (0,1,0) 1 s1

3

2

1 (0,0,0) 0 e

It could be seen from the above table that the length of each Schubert point concise with the weight of
the associated tableau. This we display in the �gure below



e, wt(T ) = 0

s1, wt(T ) = 1 s2, wt(T ) = 1

s1s2, wt(T ) = 2 s2s1, wt(T ) = 2

s1s2s1, wt(T ) = 3

Figure 1. Graph of bruhat order of weight of elements in S3

Proposition 4.3. Let λ be a partition of the form λ = (n− 1, 1), There exists only one row-strict tableau
T which is not a standard tableau and the corresponding code encodes partition λ = n.

Proof. For λ = (n− 1, 1) there are n row-strict tableau out of which n− 1 of them are standard tableaux.
The only one which is not standard is of the form

2 3 · · · n

1

In this case, for any b > 1 there is no entry in T b that give non zero coordinate in cod(T), hence
cod(T) = (0, 0, · · · , 0). By condition (ii) of remark 3.7 we say cod(T) encodes one of the partitions λ of n
if λi = #{db : db = b− 1, 1 ≤ b ≤ k, 1 ≤ b ≤ n} and the partition corresponding to the code of such form
is λ = n □

Example 4.4. Let n = 5, λ = (4, 1). The only non-standard row-strict tableaux of the given shape is

T =

2 3 4 5

1 with cod(T) = (0, 0, 0, 0, 0) and λ1 = #{db : db = 1− 1, 1 ≤ b ≤ 5} = 5, this give λ = 5.

Corollary 4.5. For any partition λ ∈ P (n) there exists a unique T ∈(rst)λ (called base �lling in [9]) with
cod(T) = (0, 0, · · · , 0) , which encodes partition λ = n.

Proof. Let T ∈ (rst)λ be a base �lling, since its entries increase from bottom to the top, then there does
not exists entry a in T with any row directly above a or any entry either above or below the cell containing
a which is of greater length than the length of the row containing a. Therefore cod(T) = (0, 0, · · · , 0) □

Proposition 4.6. Let T be a row-strict tableaux. The number of time b occurs in the dimension pair(s)
(a, b) of T determines the value in the bth coordinate of cod(T).

Proof. Suppose there are two entries a and a′ above b in the same column or b is located anywhere at the
left of a and a′, in addition if a and a′ are not bordered at the right then, by condition 2 of de�nition 3.1,
we have (a, b), (a′, b) as the dimension pairs of T. Hence the direct implication of this is that db = 2 (i.e
there are two rows strictly above b in T ).
Suppose either a or a′ is bordered immediately at the right by c or c′, if b ≤ c and b ≤ c′ and b is
below a and a′ or any where at the left then c and c′ are deleted from T b. Since the entries in the right

neighbourhood of a and a′ and by condition 2 of dimension pair of T b, (DP )T
b

are (a, b) and (a′, b).
Therefore db = 2.
In general, since we are interested in T b and all c > b are deleted from T b, then the number of time b
occurs in the pair (·, b) will be equal to the number of rows directly above b plus the number of rows which
are of greater length than the row containing b either above or below. □



Example 4.7. Let n = 5, λ = (3, 2, 1) with

3 4 6

1 2

5

DPT = {(2, 5), (4, 5)} and cod(T) = (0, 0, 0, 0, 2, 0). It could be obviously seen that 5 occurs twice in the
dimension pair of T and we have 2 at the 5th coordinate of cod(T).

Remark 4.8. From the above result, it could be seen that given a set (DP )T of dimension pairs of any
T ∈ (rst)λ it is possible to obtain the code of the associated tableau from (DP )T .

Corollary 4.9. Given any T ∈ (rst)λ, the weight wt(T ) of cod(T) gives the dimension of T.

Proof. It has been shown in proposition 4.6 that the number of time b appear in the pair (·, b) indicates
the numerical value of bth coordinate, and wt(T ) is the sum of non-zero coordinate of cod(T), hence the
result. □

Proposition 4.10. Let T ∈ (rst)λ\STλ, the word of cod(T) is not always a lattice word.

Proof. We shall proof this with counter example. Let n = 6 and λ = (3, 2, 1) with

T =

3 5 6

2 4

1

, then, cod(T) = (0, 0, 0, 0, 0, ) and ω(T ) = 000000. It is seen here that there is only one integer 0 in any
subword which contradicts the de�nition of lattice word. Hence the result. □

4.1. Characterization of Schubert Points Associated to Row-Strict tableaux. We consider the
composition structure of the reduced word of Schubert points wT and give its standard form for any
T ∈ (rst)λ\STλ.
The reduced word of wT = sc1sc2 · · · sc4 is the string of subscript c1c2 · · · ck. For example, let n = 5, λ =
(2, 2, 2). Consider

T =

1 5

2 3

4 6 , wT = s4s5s2s3s1, ω(T ) = 45231.

On breaking the reduced word into blocks in a way that, string of integers in each block increase in a
natural order from left to right. taken into consideration, the number of integers in each block results into
composition structure of wT .
For wT = s4s5s2s3s1, ω(T ) = 45|23|1 and (2, 2, 1) as its composition structure. If we arrange the
composition structure of wT such that they are weakly decreasing,then we have a partition of integer, this
we denote by αcT .

Remark 4.11. It is noteworthy that the composition structure of the reduced word of wT , T ∈ (rst)λ\STλ

are not always the same and that each db determines a block.

Proposition 4.12. Let wT be the Schubert point associated to T ∈ (rst)λ(n)\STλ of any shape. Then,
the canonical form for the composition structure of the reduced word of wT is given as
x1(x1 + 1)(x1 + 2) · · · (x1 + k1)|x2(x2 + 1)(x2 + 2) · · · (x2 + k2)| · · · |xr(xr + 1)(xr + 2)
· · · (xr + kr)|
Where xj = (b − db), kj = db − 1 and j = n − b + 1, 1 ≤ j ≤ r, r is the number of di such that
db ̸= 0, 1 ≤ b ≤ n.

Proof. Let wT ∈ (rst)λ\STλ(n) such that T is of any shape λ.
Let j = n − b + 1. Suppose db = 0, then there is nothing to proof since wb, (2 ≤ b ≤ n) is always an
identity (from the de�nition of wb).



Now, suppose db ̸= 0 and b = n. Then j = n− n+ 1 which implies that x1 = (n− dn).
Since dn ̸= 0, let's assume dn = q, 1 ≤ q ≤ l(λ)− 1.
From the de�nition of wb in [10],

wn = sn−qsn−q+1sn−q+2 · · · sn−2sn−1

Then the �rst block from the left is written as

|(n− q)(n− q + 1)(n− q + 2) · · · (n− 2)(n− 1)|
By replacing n with b and q with db in the above, we have

|(b− db)(b− db + 1)(b− db + 2) · · · (b− db + db − 2)(b− db + db − 1)|
with aj = (b− db) and kj = db − 1 then the above equation becomes

|xj(xj + 1)(xj + 2) · · · (xj + kj − 1)(xj + kj)|
Also, we have from the theorem that j = n− b+ 1 which implies that j = 1 (since b = n by hypothesis ).
Hence, we have

|x1(x1 + 1)(x2 + 2) · · · (x1 + k1 − 1)(x+ k1)|
This gives the �rst block of the composition structure of wT provided dn ̸= 0.
Mimicking the proof of the �rst block we obtain the structure of the remaining blocks. □

Example 4.13. Let T be an arbitrary row-strict tableaux with cod(T) = (0, 1, 0, 0, 0, 2), be a code of a
certain Schubert point . It is easy to see that n = 6, d1 = 0, d6 = 2. From the statement of the theorem,
we have that;
j = n− b+ 1, 1 ≤ j ≤ 2, xj = (b− db), kj = db − 1.
Now, when b = n = 6, then j = 1 =⇒ a1 = 4 also, k1 = 1. Therefore we have

x1(x1 + k1)| = 45|
This give our �rst block. For the second, we consider b = 2 and neglect other b for which db = 0. In

this case, we have x5 = 2− 1
Hence x1(x1 + 1)|x5 = 45|1 is the composition structure of the given code.
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