
Abstract. In this article, we extend theories of Tymoczko codes on standard young tableaux to row
strict tableau of any given shape λ, by investigating the algorithm through which permutations were

associated to a set of row-strict tableaux rst. Via this algorithm, we attach a code to each rst and give

some combinatorial interpretations of these codes and establish some connections between some existing
results on rst and the codes.

1. Introduction

Let (λi)
k
i=1 ( n ∈ N) be a sequence of positive integers such that λ1 ≥ λ2 ≥ · · · ≥ λk and λ1+λ2+· · ·+λk =

n. In other words, we have a partition of n denoted by λ ⊢ n.To this partition λ, there is an associated
diagram called Young diagram Yλ, composed of left justified cells (boxes) in such a way that the number
of cells in ith−row is λi. A filling of Yλ with a ∈ [n] such that entries strictly increase along rows from
left to right is called row-strict Young tableaux, and column-strict if its entries are increasing from top to
bottom in each column. We call it standard Young tableau of shape λ if it is both row-strict and column
-strict. Readers are referred to [4] for basic information on Young tableaux.
The above mentioned objects are great tools in the hands of authors in [8],[3],[9],[7], [11],[9] and [10] to do
exploit in representation theory, algebraic topology, geometry and combinatorics.

In quest of investigating the connections between some combinatorial and geometrical properties of
Springer fibers, Tymoczko in [10] introduced an algorithm through which a permutation is attached to
each row-strict tableaux (rst) of shape λ. In [6] a code was attached to each standard tableau of any
given shape λ via the algorithm in [10] which we call Tymoczko codes. Denoted by cod(T), we study
the combinatorial properties of these codes and establish connections between some of the results in [11]
and our combinatorial interpretations of these cod(T). In this we extend our results in [6] to row strict
tableaux of any given shape.

In section two, we discuss some basic terms in symmetric group (Sn) and partitions of integers as relevant
to our discussion. In section three, we give and study some combinatorial properties of Tymoczko code
of row-strict tableaux with the dimension pairs of row-strict tableaux as discussed in [11]. Section four
contains our main results.

2. Symmetric Group and Integer Partitions

2.1. The symmetric group denoted by Sn generated by the set S = {s1, s2, · · · , sn−1} of adjacent trans-
positions si, (1 ≤ i ≤ n − 1) which swaps i and i + 1 and fixes other elements of [n] subject to the
relations:

• s2i = e, ∀ 1 ≤ i ≤ n− 1; (involution)
• sisj = sjsi, if |i− j| ≥ 2; (commutation)
• sisi+1si = si+1sisi+1, 1 ≤ i ≤ n− 1 (braid relation).

The length l(w) of w, is the smallest integer k ≥ 0 such that w can be written as a product of k elements
of S (i.e. w = sc1sc2 · · · sck ∈ Sn). This expression is called the reduced decomposition of w and we say k
is the length of w and we write l(w) = k. The string of subscripts c1c2 · · · ck is the word ω of w,( though
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not necessarily unique).
A string of integers ai > 0 is said to be a lattice word if in every prefix, we have at least many ai as ai+1.
It is called a Yamanouchi word if its reversal is a lattice word.
For instance,the string 11122121 is a lattice word, and so 12122111 is a Yamanouchi word.

2.2. An order ≤ called the Bruhat order is a partial order defined on Sn, is such that, for any σ, τ ∈ Sn,
we say σ ≤ τ in Bruhat order if τ can be obtained from σ via a sequence of transpositions. In other words,
we say σ ≤ τ if and only if the reduced word of σ is a subword of the reduced word of τ.
For instance, if τ = s1s2s3s1s2 and σ = s1s2 then σ ≤ τ in the Bruhat order, since s1s2 is a subword of
s1s2s3s1s2

2.3.
A partition λ of n ∈ N denoted by λ ⊢ n, is a sequence λ = (λi)

k
i=1, λi ∈ N such that λ1 ≥ λ2 ≥ ... ≥ λk

and
∑k

i=1 λi = n. Each λi is called part of λ. The number of such λi called the length of λ denote by
l(λ), while the sum of parts is the weight of λ denoted by |λ| = λ1 + λ2 + λ3 + ... + λk. Consider n = 6,
then λ = (3, 2, 1) is one of the partitions of 6, l(λ) = 3 and |λ| = 6. We denote the set of all partitions of
n by P (n) and the set of partitions by P .
We use indices to record multiplicity of parts in a partition λ to avoid repetition of parts in λ. Hence,
we write λ = λa1

1 , λa2
2 , · · · , λak

k , if λi, (1 ≤ i ≤ k) appears in ai times in λ and we referrer to
ai as the multiplicity of λi. For instance, let n = 5 and λ = (2, 1, 1, 1) = (2, 13). Thus P (5) =
{(5), (4, 1), (3, 2), (3, 12), (22, 1), (2, 13)(15)}
There are several literatures on theories of partitions such as [1], [2], and [5] which are good for consultation.

Remark 2.1. Similar to partition of integers, is a sequence (ai)
k
i=1 of nonnegative integers such that∑k

i=1 ai = n, called the composition of nonnegative integer n.
For example, let n = 4, the following are all compositions of 4

(4), (3, 1), (1, 3), (2, 2), (2, 1, 1), (1, 2, 1), (1, 1, 2), (1, 1, 1, 1).

We consider (1, 3) and (3, 1) as different composition but they are the same as partition.

2.4. Given a partition λ of n ∈ N, there exists an associated diagram called Young diagram (Yλ) which
gives a graphical way of viewing λ. It is a collection of cells (boxes) arranged in left justified rows in a
way that the number of boxes in ith row equals λi, and is weakly decreasing from top to bottom.
For example, the Young diagram of shape λ = (3, 2, 1) is shown in table 1 .

Table 1. Young diagram of shape λ = 3, 2, 1

We use matrix notation to label each cell of Yλ, and we write (i, j) to indicate a cell in the ith row and
jth columns of Yλ.
The number of cells in each column (column length) denoted by λ′

i is equally a partition of n called the
conjugate of λ , denoted by λ′. In a case where λ = λ′ then λ is said to be self conjugate.
Suppose λ and µ are partitions of n and m respectively, such that n > m. Then Yµ is said to be a sub-
Young diagram of Yλ,and we write Yµ ⊂ Yλ if µ ⊂ λ. In other words, Yµ ⊂ Yλ, if µ is contained in
λ. The Fillings of the cells of a Young diagram with numbers from [n] = {1, 2, 3, · · · , n} , results to a
combinatorial objects called Young tableaux which turn out to be strong tools in representation theory,
algebraic combinatorics, geometry and topology.
There are n! Young tableaux of shape λ. For instance, let n = 2 and λ = 2, 1, the list of all possible Young
tableaux of the corresponding shape are displayed in table 2.

UNDER PEER REVIEW



Table 2. All possible Young tableaux of shape λ = 2, 1

1 2

3
1 3

2
2 3

1
2 1

3
3 1

2
3 2

1

2 3 6

1 4

5

Table 3. row strict tableau

The filling of Yλ is called row strict tableau (rst) if the filling is such that the entries strictly increase from
left to right along the row,with no condition on the columns.
We shall denote by (rst)λ the collection of all row strict tableaux of shape λ , the size of (rst)λ is given
by the multinomial coefficient. That is,

#(rst)λ =
n!∏k

i=1 λi!

For instance, let n = 5 and λ = (2, 2, 1), #(rst)λ = 5!
2!××2!×1! = 30.

If the filling of Young diagram of shape λ is such that the integers from 1 to n appears exactly once and that
its entries are increasing across each row and column, such a filling is call standard Young tableaux (SYT).
We denote by STλ the collection of all standard Young tableaux of shape λ. One of the remarkable results

1 2 5

3 4

6

Table 4. standard tableau

about standard Young tableaux, is the hook-length formula. This is useful in counting the number of
all possible Standard Young tableaux of any given shape. Let λ be a partition of n > 0 and Yλ a Young
diagram of shape λ, then the number #STλ of standard Young tableaux of shape λ is obtained by.

#STλ =
n!∏

(i,j)∈λ hi,j
. (2.1)

Where hi,j is the number of cells directly to the right and directly bellow the cell in (i, j)th position
including the cell.

Remark 2.2. Thus far, it is obvious that STλ ⊂ (rst)λ, hence, we shall be writing (rst)λ\STλ when our
attention is on those row-strict tableaux that are not standard.

3. Dimension pairs and Tymoczko Code for Row-Strict Tableaux

In this section, we briefly discuss the algorithm discussed in [11] and [9], where the dimension pairs and
permutations were attached to a set of row-strict tableau respectively.
Following [11], we have definition 3.1.

Definition 3.1. Let λ ⊢ n and T ∈(rst)λ, a pair of entries (a, b) in T is said to be a dimension pair of T if
it satisfies all the following conditions;

(1) a < b
(2) ”b” is below ”a” either in the same column, or located anywhere at the left of a
(3) If ”a” is immediately bordered on the right by ”c” then b ≤ c.
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We denote the set of all such pairs of T by (DP )T .

Example 3.2. Let n = 6 with λ = (3, 2, 1), consider

T =

1 4 5

3 6

2

(DP)T = {(1, 2), (1, 3), (5, 6)}

Remark 3.3. There is a unique T ∈ (rst)λ referred to as base filling in [11] . This filling is such that, they
decrease from top to bottom for each column. For example, let n = 6 and λ = (3, 2, 1) then the base filling
of shape λ is

T =

3 5 6

2 4

1 .

The set of dimension pair of base filling of any shape λ is usually empty.

Let T ∈ (rst)λ, we denote by Tb, b ∈ N a tableau obtained by deleting all entries c > b in T. For instance,
let n = 6 and λ = (3, 2, 1) with

T =

3 4 5

1 2

6

then

T3 =

3
1 2

Following [9] we have definition 3.4.

Definition 3.4. Let T ∈ (rst)λ, we denote by db the number of rows above the row containing b in T b

which are of equal length plus the total number of rows in T b which are of greater length (either above or
below) than the row containing b and wb denote the increasing product of simple transpositions of length
b.
If db = 0 then wb = e is the identity. Then the Schubert point associated to T is a permutation in Sn,
denoted by wT and defined as. wT = wnwn−1wn−2 · · ·w2 [10]

Remark 3.5. If T is a standard Young tableaux, the procedures in the above definition become easier as
we only consider the number of rows strictly above b, since it not possible to have any row (either of less,
equal of greater length) below b in Tb.

Example 3.6. Let n = 6, and λ = (3, 2, 1) with

T =

3 4 5

1 2

6

d1 = 0, d2 = 0, d3 = 1, d4 = 0, d5 = 0, d6 = 2.

The Shubert point wT associated to the above row-strict tableau according to Tymoczko and Precup in
[9] is wT = s4s5s2.
Arranging the values of the d′bs, 1 ≤ b ≤ 6 in example 3.6 in a natural order of b′s we have (d1, d2 · · · d6) =
(0, 0, 1, 0, 0, 2). This we call Tymoczko code (denoted by cod(T)) for the Schubert point wT . We equally
attach a numerical value to each row-strict tableau by adding up all the coordinates of cod(T), and call it
the weight of T denoted it by wt(T). For instance, the weight of T in example 3.6 is 3.

Remark 3.7. We like to bring to the notice of the reader at this juncture that:

i) For any T ∈ (rst)λ, l(wT ) = wt(T ) = #(DP )T .
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ii) If T is a standard Young tableau of shape λ = (λ1, λ2, · · ·λk), then
λi = #{db : db = i − 1, 1 ≤ i ≤ k, 1 ≤ b ≤ n} and we say cod(T) encode at least one of the
partitions λ ∈ P (n).

4. Some Combinatorial Properties of Tymoczko Codes for Row-Strict Tableaux

In this section, we itemize our results with their statements of proof.

Proposition 4.1. For λ = 1n the weight wt(T ) of T ∈ (rst)λ respects the Bruhat order on Sn, hence
it preserves the structure the bruhat graph of Sn. In other words, let wT , w′

T ∈ Sn respectively be the
Schubert points of T, T ′ ∈(rst)λ with wt(T ) and wt(T ′) the weights of T and T′ then, wt(T ) ≤ wt(T ′) if
and only if wT ≤ w′

T .

Proof. We know that,for n ∈ N, if λ = 1n, then #(rst)λ = n! which is the same as the order of Sn.
Now, Suppose wT ≤ w′

T in Bruhat order, we need to show that wt(T ) ≤ wt(T ′).
We recall from remark 3.7 that l(wT ) = wt(T ) for any Schubert point wT ∈ Sn, (where l(wT ) is the length
of wT ). By implication l(wT ) ≤ l(w′

T ) implies wt(T ) ≤ wt(T ′).
Conversely, we assume wt(T ) ≤ wt(T ′). Since l(wT ) = wt(T ), then l(wT ) ≤ l(w′

T ) implies wT ≤ w′
T . □

Example 4.2. Let n = 3 and λ = 13, in this case, there exist six row strict-tableaux which we display in
the table below.

T ∈ (rst)λ cod(T) wt(T) wT

1

2

3 (0,1,2) 3 s1s2s1

1

3

2 (0,1,1) 2 s2s1

2

1

3 (0,0,2) 2 s1s2

2

3

1 (0,0,1) 1 s2

3

1

2 (0,1,0) 1 s1

3

2
1 (0,0,0) 0 e

It could be seen from the above table that the length of each Schubert point concise with the weight of
the associated tableau. This we display in the figure below
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e, wt(T ) = 0

s1, wt(T ) = 1 s2, wt(T ) = 1

s1s2, wt(T ) = 2 s2s1, wt(T ) = 2

s1s2s1, wt(T ) = 3

Figure 1. Graph of bruhat order of weight of elements in S3

Proposition 4.3. Let λ be a partition of the form λ = (n− 1, 1), There exists only one row-strict tableau
T which is not a standard tableau and the corresponding code encodes partition λ = n.

Proof. For λ = (n− 1, 1) there are n row-strict tableau out of which n− 1 of them are standard tableaux.
The only one which is not standard is of the form

2 3 · · · n

1

In this case, for any b > 1 there is no entry in T b that give non zero coordinate in cod(T), hence
cod(T) = (0, 0, · · · , 0). By condition (ii) of remark 3.7 we say cod(T) encodes one of the partitions λ of n
if λi = #{db : db = b− 1, 1 ≤ b ≤ k, 1 ≤ b ≤ n} and the partition corresponding to the code of such form
is λ = n □

Example 4.4. Let n = 5, λ = (4, 1). The only non-standard row-strict tableaux of the given shape is

T =

2 3 4 5

1 with cod(T) = (0, 0, 0, 0, 0) and λ1 = #{db : db = 1− 1, 1 ≤ b ≤ 5} = 5, this give λ = 5.

Corollary 4.5. For any partition λ ∈ P (n) there exists a unique T ∈(rst)λ (called base filling in [9]) with
cod(T) = (0, 0, · · · , 0) , which encodes partition λ = n.

Proof. Let T ∈ (rst)λ be a base filling, since its entries increase from bottom to the top, then there does
not exists entry a in T with any row directly above a or any entry either above or below the cell containing
a which is of greater length than the length of the row containing a. Therefore cod(T) = (0, 0, · · · , 0) □

Proposition 4.6. Let T be a row-strict tableaux. The number of time b occurs in the dimension pair(s)
(a, b) of T determines the value in the bth coordinate of cod(T).

Proof. Suppose there are two entries a and a′ above b in the same column or b is located anywhere at the
left of a and a′, in addition if a and a′ are not bordered at the right then, by condition 2 of definition 3.1,
we have (a, b), (a′, b) as the dimension pairs of T. Hence the direct implication of this is that db = 2 (i.e
there are two rows strictly above b in T ).
Suppose either a or a′ is bordered immediately at the right by c or c′, if b ≤ c and b ≤ c′ and b is
below a and a′ or any where at the left then c and c′ are deleted from T b. Since the entries in the right

neighbourhood of a and a′ and by condition 2 of dimension pair of T b, (DP )T
b

are (a, b) and (a′, b).
Therefore db = 2.
In general, since we are interested in T b and all c > b are deleted from T b, then the number of time b
occurs in the pair (·, b) will be equal to the number of rows directly above b plus the number of rows which
are of greater length than the row containing b either above or below. □
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Example 4.7. Let n = 5, λ = (3, 2, 1) with

3 4 6

1 2

5

DPT = {(2, 5), (4, 5)} and cod(T) = (0, 0, 0, 0, 2, 0). It could be obviously seen that 5 occurs twice in the
dimension pair of T and we have 2 at the 5th coordinate of cod(T).

Remark 4.8. From the above result, it could be seen that given a set (DP )T of dimension pairs of any
T ∈ (rst)λ it is possible to obtain the code of the associated tableau from (DP )T .

Corollary 4.9. Given any T ∈ (rst)λ, the weight wt(T ) of cod(T) gives the dimension of T.

Proof. It has been shown in proposition 4.6 that the number of time b appear in the pair (·, b) indicates
the numerical value of bth coordinate, and wt(T ) is the sum of non-zero coordinate of cod(T), hence the
result. □

Proposition 4.10. Let T ∈ (rst)λ\STλ, the word of cod(T) is not always a lattice word.

Proof. We shall proof this with counter example. Let n = 6 and λ = (3, 2, 1) with

T =

3 5 6

2 4

1

, then, cod(T) = (0, 0, 0, 0, 0, ) and ω(T ) = 000000. It is seen here that there is only one integer 0 in any
subword which contradicts the definition of lattice word. Hence the result. □

4.1. Characterization of Schubert Points Associated to Row-Strict tableaux. We consider the
composition structure of the reduced word of Schubert points wT and give its standard form for any
T ∈ (rst)λ\STλ.
The reduced word of wT = sc1sc2 · · · sc4 is the string of subscript c1c2 · · · ck. For example, let n = 5, λ =
(2, 2, 2). Consider

T =

1 5

2 3

4 6 , wT = s4s5s2s3s1, ω(T ) = 45231.

On breaking the reduced word into blocks in a way that, string of integers in each block increase in a
natural order from left to right. taken into consideration, the number of integers in each block results into
composition structure of wT .
For wT = s4s5s2s3s1, ω(T ) = 45|23|1 and (2, 2, 1) as its composition structure. If we arrange the
composition structure of wT such that they are weakly decreasing,then we have a partition of integer, this
we denote by αcT .

Remark 4.11. It is noteworthy that the composition structure of the reduced word of wT , T ∈ (rst)λ\STλ

are not always the same and that each db determines a block.

Proposition 4.12. Let wT be the Schubert point associated to T ∈ (rst)λ(n)\STλ of any shape. Then,
the canonical form for the composition structure of the reduced word of wT is given as
x1(x1 + 1)(x1 + 2) · · · (x1 + k1)|x2(x2 + 1)(x2 + 2) · · · (x2 + k2)| · · · |xr(xr + 1)(xr + 2)
· · · (xr + kr)|
Where xj = (b − db), kj = db − 1 and j = n − b + 1, 1 ≤ j ≤ r, r is the number of di such that
db ̸= 0, 1 ≤ b ≤ n.

Proof. Let wT ∈ (rst)λ\STλ(n) such that T is of any shape λ.
Let j = n − b + 1. Suppose db = 0, then there is nothing to proof since wb, (2 ≤ b ≤ n) is always an
identity (from the definition of wb).
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Now, suppose db ̸= 0 and b = n. Then j = n− n+ 1 which implies that x1 = (n− dn).
Since dn ̸= 0, let’s assume dn = q, 1 ≤ q ≤ l(λ)− 1.
From the definition of wb in [10],

wn = sn−qsn−q+1sn−q+2 · · · sn−2sn−1

Then the first block from the left is written as

|(n− q)(n− q + 1)(n− q + 2) · · · (n− 2)(n− 1)|
By replacing n with b and q with db in the above, we have

|(b− db)(b− db + 1)(b− db + 2) · · · (b− db + db − 2)(b− db + db − 1)|
with aj = (b− db) and kj = db − 1 then the above equation becomes

|xj(xj + 1)(xj + 2) · · · (xj + kj − 1)(xj + kj)|
Also, we have from the theorem that j = n− b+ 1 which implies that j = 1 (since b = n by hypothesis ).
Hence, we have

|x1(x1 + 1)(x2 + 2) · · · (x1 + k1 − 1)(x+ k1)|
This gives the first block of the composition structure of wT provided dn ̸= 0.
Mimicking the proof of the first block we obtain the structure of the remaining blocks. □

Example 4.13. Let T be an arbitrary row-strict tableaux with cod(T) = (0, 1, 0, 0, 0, 2), be a code of a
certain Schubert point . It is easy to see that n = 6, d1 = 0, d6 = 2. From the statement of the theorem,
we have that;
j = n− b+ 1, 1 ≤ j ≤ 2, xj = (b− db), kj = db − 1.
Now, when b = n = 6, then j = 1 =⇒ a1 = 4 also, k1 = 1. Therefore we have

x1(x1 + k1)| = 45|
This give our first block. For the second, we consider b = 2 and neglect other b for which db = 0. In

this case, we have x5 = 2− 1
Hence x1(x1 + 1)|x5 = 45|1 is the composition structure of the given code.
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