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Abstract
In this paper, we define a weakly compatible mapping of type (P) in Menger space and establish a unique common fixed point theorem for six self-mappings in this space.
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1.Introduction: “One of the most significant generalization of metric space was firstly  introduced by Karl Menger in 1942 called statistical metric space” [11], “often known as probabilistic metric space after 1964. Recently, in 2021, A.K. Chaudhary, K. Jha, K.B. Manandhar, and P.P. Murthy” [2] “introduced a new notion of compatible mapping of type (P) in Menger space and continuing this space study on weakly compatible by” [8], [5], [17], and [16]. The purpose of this paper is to define a new notion of weakly compatible mapping of type (p) in Menger space and establish a common fixed point theorem.
2. Preliminaries:
Definition 2.1.[3] If a function F:  is 
(i) is non-decreasing,
(ii) is left continuous, and
(iii) F(x) = 0 and F(x) = 1.
Then, it is said to be distribution function.
Definition 2.2.[3]A pair (K, F) is said to be Probabilistic Metric Space if the distribution function F(p, q) or , , satisfies the following conditions: 
(i) 
(ii) ,
(iii)  and
(iv)   &  
, .
Here, F(p, q)(x) denotes the value of F(p, q) at x ∈ R. 
Definition 2.3.[2] Two mappings  are said to be Compatible mappings of type (P) in Menger space (K, F, t) iff

Whenever  is a sequence in K such that  for some k in K.
Definition 2.4.[10] Two mappings  are said to be Weakly Compatible Mappings of type (P) in Menger space (K, F, t) if and only if 

Whenever the sequence  is in K such that  for k  K.
Lemma 2.1. [5] Let (K, F, t) be a Menger space. If there exist  such that for all , , then p = q.
For proving our main result we use some basic definitions, Theorems, Propositions and Lemmas which are given in [1].
Main Result
Let (X, M, t) be a complete Menger Space with t (x, y) = min{x, y} for all  and  be mappings such that
1 A(X) VT(X) and  B(X)  DS(X) 
2 (A, DS) and (B, VT) are weakly compatible.
3 One of A, B, D, S, V, T be continuous.
4 (B, DS) and (A, VT) are commute each other.
5 There exist a constant  such that

For all x, y X,  (0, 2) and q > 0 where  : [0, 1]  [0, 1] satisfy
(i) is continuous and non-decreasing on [0, 1]
(ii)for all n in [0, 1]
Noting that if , class of all mappings  then ,  and  for all n in [0, 1].
Then A, B, D, S, V and T have a unique common fixed point in X.
Proof: Consider X. Since A(X)  VT(X), so there exist a point  in X such that  . again, since B(X)  DS(X), so for , we may choose  in X such that B and so on
And inductively, we take sequences  and  in X such that
     and , for n 0,1,2…..
Putting  and  for all q>0 and r = 1-p with p (0,1) in (5), we get

Or




As p 1, we obtain


 by property of 
Hence we get,

Similarly, we obtain

Therefore, for every n  N, 
So, by lemma,  is a Cauchy sequence in K.
Since the Menger space (X, M, t) is complete, so  converges to a point z in X and 
consequently the sub-sequences , ,  and  of  also
converges to z.
Now suppose that VT is continuous then since B and VT are weakly compatible mappings of 
type (p) then by proposition,  as . Putting  
and  in (5), we get


As n  

Letting r = 1- p with p (0, 1)



 ,  by property of 
Which implies  z = VTz by lemma 2.1.
Similarly , replacing x by  and y by z in (5) we have

Letting n   




, as p  1
So that, 
Or
 , by property of 
Which implies z = Bz by lemma 2.1.
Since by ,  point w in X such that Bz = DSw = z.
By putting x = w and y = z in (5), we get





Therefore , 
Or, , by property of 
Which implies Aw = z, by lemma 2.1.
Again, since A and DS are weakly compatible mappings of type(p) and Aw = DSw = z, by proposition,
We have for every  > 0

Hence  Aw = AAw = DS(DSw) = DSw
Finally, by relation (5) with x = z, y = Bz = z, we have 






Or  by property of 
Which implies   by lemma 2.1.
Hence   Az = Bz = VTz = z.
Now by putting x = z, y = DSz in relation (5), we have 




Or 
 by property of 
Which implies  DSz = z by lemma 2.1.
Now to prove Sz = z, put x = Sz and y = z in relation (5)





 by property of 
Which implies Sz = z by lemma 2.1.
Since DSz = z implies that Dz = z.
Now to prove Tz = z, put x = z, y = Tz in relation (5)
We have,




 
Or
  by property of 
Therefore, Tz = z, by lemma 2.1.
Since VTz = z implies that Vz = z.
Hence .
Therefore z is common fixed point of A, B, D, S, V and T.
Uniqueness: suppose h is another point in X such that
.
Then putting x = z, y = h and r = 1 in relation (5), we get




 by property of 
Which implies that z = h by lemma 2.1.
Hence,  and z is a unique common fixed point for A, B, D, S, V and T in X.
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