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ANALYTIC ERROR ESTIMATES IN SEMI-DISCRETIZATION OF THE 

STOCHASTIC CAHN-HILLIARD EQUATION 

Abstract 
This study examines the semi-discretization of the stochastic Cahn-Hilliard equation, which represents 

phase separation phenomena in multi-component mixtures affected by random fluctuations. An analytic 

error estimate in the L² norm is derived for the solution of the continuous stochastic equation compared 

to its semi-discretized approximation. The finite difference method is utilized for spatial discretization, 

ensuring the stability and convergence properties of the numerical scheme. We support our theoretical 

findings with numerical experiments that confirm the established error estimates and underscore the 

implications for simulating phase separation in noisy environments. The analysis demonstrates that error 

diminishes with increasing spatial resolution, contingent upon the specific smoothness and regularity of 

the initial data and noise. The primary finding indicates that the error diminishes as spatial resolution 

increases, contingent upon specific smoothness and regularity conditions applied to the initial data and 

noise. The study presents numerical experiments to validate theoretical findings and examines the 

implications of results for simulating phase separation in noisy environments. This study enhances the 

understanding of the dynamics of stochastic phase separation and establishes a solid framework for the 

advancement of numerical methods for stochastic partial differential equations (SPDEs).  

 

Keywords: Stochastic Cahn-Hilliard equation, space-time white noise, semi-discretization, finite 

difference method, L
2
-norm error estimate and stochastic partial differential equations (SPDEs 

 

Introduction 

In order to simulate phase separation in binary mixes, like alloys or polymer blends, where two 

components gradually separate into different areas or phases, Cahn and Hilliard developed the 

Cahn-Hilliard equation in 1958.The process by which an originally heterogeneous state 

transforms into a more stable configuration while reducing the free energy of the system is 

referred to as ation. The gradient of the chemical potential, which is a function of the 

concentration field, drives diffusion, causing this phase separation. A fourth-order nonlinear 

partial differential equation (PDE) of the following form can be used to express the deterministic 

Cahn-Hilliard problem: 

 
𝑑𝑢

𝑑𝑡
=  ∇𝜇, 𝑤𝑖𝑡ℎ 𝜇 =  −∈2 ∆𝜇 +  𝑓 𝑢 , 
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where 𝑢(𝑥, 𝑡) represents the concentration of one component in the mixture, ϵ is a small positive 

parameter related to the interfacial thickness, and 𝑓(𝑢) is a nonlinear function representing the 

derivative of a double-well potential, often taken as 𝑓 𝑢 =  𝑢3 −  𝑢, corresponding to the free 

energy density of the system. 

 

Originally developed to characterize phase separation in binary alloys, the Cahn-Hilliard 

equation has since found application in a number of domains, such as materials research and 

image processing. Phase separation in the presence of random fluctuations, like thermal noise, is 

modeled using the stochastic form of the Cahn-Hilliard equation, which is driven by space-time 

white noise. Accurately replicating real-world processes requires an understanding of this 

stochastic partial differential equations (SPDE) numerical approximation. 

 

Stochastic Cahn-Hilliard Equation 

Phase separation does not always take place in a completely deterministic setting in practical 

applications. Thermal noise is one type of random fluctuation that can affect the dynamics of the 

phase separation process. This encourages the study of a stochastic Cahn-Hilliard equation, in 

which these random effects are modeled by adding a noise term. The following is the form of the 

space-time white noise-driven stochastic Cahn-Hilliard equation: 

 
𝑑𝑢

𝑑𝑡
=  −∇𝜇 +  𝜂 𝑥, 𝑡 , 𝜇 =  −∈2 ∆𝜇 +  𝑓 𝑢 , 

 

 

where 𝜂(𝑥, 𝑡) is a space-time white noise term that introduces stochastic perturbations. 

Specifically, 𝜂 𝑥, 𝑡  can be interpreted as Gaussian noise that is delta-correlated in both space 

and time: 

 

𝔼  𝜂 𝑥, 𝑡 𝜂 𝑥 ′, 𝑡′  =  𝛿 𝑥 − 𝑥 ′ 𝛿 𝑡 − 𝑡′  
 

This time period captures the random fluctuations that have an effect on the machine's dynamics 

on microscopic scales. The creation of noise basically alters the conduct of the device, leading to 

wealthy dynamics and new challenges in both the analysis and numerical approximation of the 

equation. 

 

Of the Stochastic Cahn-Hilliard Equation 

Numerical strategies are critical for solving the stochastic Cahn-Hilliard equation, specifically in 

higher dimensions or for complicated geometries. A standard approach is to first discretize the 

spatial domain using finite distinction, finite detail, or spectral strategies, while retaining the time 

variable non-stop. This technique is called semi-discretization, as the equation is discretized in 

space but not yet in time. 

 

To discretize the spatial domain, we divide it into 𝑁 grid points 𝑥𝑖  with spacing ∆𝑥. Let 𝑢𝑖 𝑡 ≈
 𝑢(𝑥𝑖 , 𝑡) represent the semi-discretized approximation to the solution at grid point 𝑥𝑖  and time t. 

The semi-discretized Cahn-Hilliard equation then becomes: 
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𝑑𝑢𝑖(𝑡)

𝑑𝑡
=  −Δh𝜇𝑖 𝑡 +  𝜂𝑖 𝑡 , 

 

where Δh  is the discrete Laplacian operator, defined for a one-dimensional uniform grid by: 

 

Δh𝜇𝑖 =  
𝑢𝑖+1 − 2𝑢𝑖 + 𝑢𝑖−1 

 Δ𝓍 2
 

 

and 𝜂𝑖 𝑡  represents the discretized noise term. The discrete chemical potential 𝜇𝑖 𝑡  is given by: 

 

μ
i
(𝑡) =  −∈2 ∆ℎ𝑢𝑖 𝑡 +  𝑓 𝑢(𝑡) , 

 

 

where 𝑓 𝑢  = 𝑢3 −  𝑢 in the continuous case. 

 

Challenges of Stochastic Partial Differential Equations (SPDEs) 

Numerical approximation of stochastic partial differential equations (SPDEs) just like the 

stochastic Cahn-Hilliard equation affords numerous demanding situations. Unlike deterministic 

PDEs, wherein errors arise simplest from the discretization of space and time, SPDEs include an 

extra layer of complexity due to the stochastic noise. This noise can lead to rather irregular 

solutions, which complicates the mistake evaluation and the design of numerical techniques. 

Furthermore, the fourth-order nature of the Cahn-Hilliard equation calls for cautious remedy of 

boundary situations and ensures that preferred numerical techniques, which include finite 

variations or finite elements, have to be adapted to handle better-order derivatives and the 

interplay among noise and nonlinearity. 

 

Error Analysis and Norm Error Estimate 

One of the primary goals in studying numerical methods for SPDEs is to estimate the error 

between the semi-discretized numerical solution and the true solution of the continuous equation. 

In this paper, we focus on deriving an analytic error estimate in the L
2
-norm between the semi-

discretized solution 𝑢ℎ(𝑡) and the exact solution 𝑢 𝑡  of the stochastic Cahn-Hilliard equation. 

 

The L
2
-norm error at time t is defined as: 

 

 𝑢 𝑡 − 𝑢ℎ(𝑡) 𝐿2 =      𝑢 𝑥, 𝑡 − 𝑢ℎ(𝑥, 𝑡) 2 𝑑𝑥
Ω

 

1/2

 

 

 

For the semi-discretized solution, this norm can be approximated by: 

 𝑢 𝑡 − 𝑢ℎ(𝑡) 𝐿2 ≈    𝑢 𝑥, 𝑡 − 𝑢𝑖 𝑡 
2 Δ𝑥

𝑁

ι=1

 

1/2

 

Our goal is to derive an estimate of this error in terms of the spatial discretization parameter Δ𝑥. 

Specifically, we aim to show that the error decays as Δ𝑥 decreases, following a power law: 
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 𝑢 𝑡 − 𝑢ℎ(𝑡) 𝐿2 ≤  𝐶(Δ𝑥)𝑝  

 

where C is a constant that depends on the regularity of the initial data and the noise, and p is a 

positive exponent that reflects the convergence rate. Under appropriate smoothness assumptions 

on the solution and noise, we expect to show that p = 2, indicating second-order convergence 

with respect to the spatial grid size. 

 

Numerical methods for SPDEs face good sized challenges due to the interaction among noise, 

nonlinearity, and the complexity of boundary situations. The purpose of this paper is to analyze 

the semi-discretization of the stochastic Cahn-Hilliard equation the usage of a finite distinction 

method in area and derive an analytic L2-norm error estimate. We will show that the semi-

discretized scheme converges to the non-stop solution as the spatial grid is delicate, with 

mistakes prices relying on the regularity of the solution and the noise. 

 

Literature Review 
Recent studies have delved into numerical methods for the stochastic Cahn-Hilliard equation. Qi 

and Wang (2020) established strong convergence rates for fully discrete finite element methods 

applied to the Cahn-Hilliard-Cook equation, highlighting the dependence of convergence rates 

on the spatial regularity of the noise process.  
 

Kovacs, Larsson, and Mesforush (2011) investigated the nonlinear stochastic Cahn–Hilliard 

equation perturbed by additive colored noise. They established the almost sure existence and 

regularity of solutions. The study introduced a spatial approximation using a standard finite 

element method and provided error estimates of optimal order on sets of probability arbitrarily 

close to one. Additionally, strong convergence was proven without a known rate.  

 

Furihata et al. (2018) examined the stochastic Cahn–Hilliard equation driven by additive 

Gaussian noise in convex domains up to three dimensions. They discretized the equation using a 

standard finite element method in space and a fully implicit backward Euler method in time. The 

research demonstrated that the numerical solution converges strongly to the exact solution as the 

discretization parameters tend to zero, supported by optimal error estimates and uniform-in-time 

moment bounds.  

 

Antonopoulou et al. (2021) focused on the stochastic Cahn–Hilliard equation with additive noise 

scaling with the interfacial width parameter. They verified strong error estimates for a gradient 

flow structure-inheriting time-implicit discretization, noting that the inverse of the interfacial 

width parameter only enters polynomially. For sufficiently large scaling parameters, convergence 

in probability of iterates towards the deterministic Hele–Shaw/Mullins–Sekerka problem in the 

sharp-interface limit was shown. These findings were complemented by computational studies 

illustrating the effect of noise on geometric evolution in the sharp-interface limit.  

 

Banas and Vieth (2022) derived a posteriori error estimates for a fully discrete finite element 

approximation of the stochastic Cahn–Hilliard equation. The a posteriori bound was obtained by 

splitting the equation into a linear stochastic partial differential equation and a nonlinear random 

partial differential equation. The resulting estimate is robust concerning the interfacial width 

parameter and is computable, involving the discrete principal eigenvalue of a linearized 
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stochastic Cahn–Hilliard operator. The estimate also remains robust with respect to topological 

changes and the intensity of stochastic noise. Numerical simulations demonstrated the 

practicality of the proposed adaptive algorithm. 

 

Materials and Methods 

Stochastic Cahn-Hilliard Equation 

The stochastic Cahn-Hilliard equation in its standard form is given by: 

 

 
𝑑𝑢(𝑥, 𝑡)

𝑑𝑡
=  −Δ  ϵ2Δ𝑢 𝑥, 𝑡 −  𝑓(𝑢(𝑥, 𝑡) ) +  𝜂 𝑥, 𝑡 , 

 

 

Semi-Discretization in Space 

To approximate the solution numerically, we employ a semi-discretization of the spatial domain 

using a finite difference scheme. Let the spatial domain be discretized with grid points xi = iΔx 

for i = 0,1,…, N, where Δx = 1/N is the grid spacing. The semi-discretized equation becomes: 

 
𝑑𝑢𝑖(𝑡)

𝑑𝑡
=  −Δ  ϵ2Δh𝑢𝑖 𝑡 −  𝑓(𝑢 𝑡 ) +  𝜂𝑖 𝑡 ,  

 

where Δh represents the discrete Laplacian operator and ηi(t) is the discretized white noise term, 

modeled as independent Gaussian increments. 

 

L
2
-Norm Error Estimate 

To derive the error estimate, let uh(t) represent the semi-discretized solution and u(t) the solution 

of the continuous equation. The L
2
-norm error at time t is defined as: 

 

 𝑢 𝑡 − 𝑢ℎ(𝑡) 2
𝐿2 =    𝑢 𝑥, 𝑡 − 𝑢𝑖 𝑡 

2 Δ𝑥

𝑁

𝑖=1

 

 

Our goal is to bound this error in terms of Δx, the spatial discretization parameter, and show that 

it converges to zero as Δx decreases. 

 

Assumptions and Analytical Framework 

We assume sufficient regularity on the initial data u0(x) and the noise η(x,t). Specifically, we 

require that the solution of the stochastic Cahn-Hilliard equation belongs to appropriate Sobolev 

spaces, ensuring that the necessary derivatives exist and are bounded. 

 

Using energy estimates and the Itô isometry, we derive a bound for the error that involves both 

deterministic and stochastic terms. We apply standard techniques from the theory of SPDEs, 

such as the Galerkin method, to establish convergence and stability of the semi-discretized 

solution. 

 

Finite Difference Method 
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Many complicated troubles stand up in the discipline of engineering, Physics and carried out 

Mathematics that could defile analytical answer. Such nonlinear troubles are better technique the 

use of numerical strategies. Finite difference technique is a effective numerical scheme 

employed in acquiring the numerical solution of differential equations. The FDM approximates 

derivatives with finite difference and as such converts regular differential equations (ODEs) and 

PDEs into a gadget of linear equations that can be solved directly. Taylor’s collection expansion 

is used to approximate the answer of the PDEs. The process includes the discretization of the 

continuous trouble to reap discrete trouble and the solution is approximated at those discrete 

points. Computers may be used to carry out these algebraic computations correctly (Njoseh and 

Okonta, 2002) and (Malik et al; 2016). 

For the sake of simplicity, we shall consider the one-dimensional case only. The main concept 

behind any finite difference scheme is related to the definition of the derivative of a smooth 

function f at a point ∈ R , 

𝑓 ′ 𝑥 = lim
ℎ→∞

𝑓 𝑥 + ℎ − 𝑓(𝑥)

ℎ
 

 

Finite Difference Method for Semi-Discretization of the Stochastic Cahn-Hilliard Equation 

The Cahn-Hilliard equation fashions phase separation approaches in binary combinations and is 

important to many bodily systems. To seize the outcomes of random fluctuations, the Stochastic 

Cahn-Hilliard Equation (SCHE) introduces stochastic noise. Solving this equation numerically 

calls for discretization techniques that manage each the non-linear deterministic element and the 

stochastic time period efficaciously. One commonplace technique is semi-discretization, in 

which handiest the spatial variables are discretized to begin with, whilst the time variable 

remains non-stop. 

 

The Stochastic Cahn-Hilliard Equation (SCHE) 

 
𝑑𝑢𝑖(𝑡)

𝑑𝑡
= Δ  −ϵ2Δh𝑢𝑖 𝑡 −  𝑓(𝑢 𝑡 ) +  𝜂𝑖 𝑡 ,  

 

Finite Difference Approximation of the Laplacian 

The Laplace operator Δ𝑢(𝑥, 𝑡) at grid point xi can be approximated using the second-order 

central difference formula: 

Δh𝑈𝑖 =  
𝑈𝑖−1 − 2𝑈𝑖 + 𝑈𝑖+1

ℎ
2  

 

where Δh denotes the discrete Laplacian operator. 

 

The semi-discrete form of the SCHE at each grid point xi becomes: 
𝑑𝑈𝑖(𝑡)

𝑑𝑡
= Δh   −ϵ2Δh𝑈𝑖 𝑡 −  𝑓(𝑈𝑖 𝑡 ) +  𝜂𝑖 𝑡  

 

where f(Ui) = Ui
3
 − Ui and ηi(t) is the discretized noise term. 

 

Semi-Discrete Stochastic Cahn-Hilliard Equation 
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The semi-discrete SCHE can now be written as a system of stochastic differential equations 

(SDEs) for the vector of unknowns U(t) = {Ui(t)}i=0
N 

𝑑𝑈(𝑡)

𝑑𝑡
= Δh   −ϵ2Δh𝑈 𝑡 +  𝑓(𝑈 𝑡 ) +  𝜂 𝑡  

 

Numerical Simulation 

For the numerical experiments, we put in force the semi-discretized scheme the usage of a finite 

distinction approach for the spatial derivatives. The stochastic term is approximated by using 

generating random numbers with suitable statistical houses to symbolize area-time white noise. 

The temporal evolution is computed using an implicit time-stepping scheme to make sure 

balance in python programming language. 
 

Example 

To simulate the Stochastic Cahn-Hilliard Equation using semi-discretization with finite element 

method (FEM) we first breakdown the problem.  

 
𝑑𝑢

𝑑𝑡
= ∇.  𝑀 𝑢 ∇(μ) +  ξ(𝑥, t) 

 

The chemical potential μ is typically given by 

 

μ = −ε2∇2
u + 𝑓 ′  𝑢  

 

where ε is a parameter controlling the interface thinkness and 𝑓(𝑢) is a double-well potential, 

often taken as 𝑓 𝑢 =  
1

4
(𝑢2 − 1)2 

 

Implementation for the stochastic Cahn-Hilliard equation using a simple FEM discretization and 

Euler-Maruyama for time stepping: 

 

Table 1, the simulated solution for the Cahn-Hilliard equation 

Times step  U Du Dt Dt + noise Np.sqrt(dt) 

0 -0.96726919 -0.99821158 -1.01965162 -1.03659735 -0.99319174 

10 -1.00029334 -0.99890773 -0.99597991 -0.99413535 -0.99440691 

20 -0.99913038 -1.00488928 -1.00249731 -1.00261876 -1.0027849 

30 -0.99987561 -0.99598821 -0.99757807 -1.00244865 -1.00178512 

40 -1.0015207 -1.00556135 -1.01193556 -1.01412023 -1.01512148 

50 -1.00680604 -1.00533849 -1.01825321 -1.02095133 -1.02147343 

60 -1.00478449 -1.00346218 -1.00129437 -1.00355234 -1.01028282 

70 -1.00154424 -1.00626824 -1.00647783 -1.00616589 -1.00824693 

80 -0.99473294 -0.99622264 -0.9962117 -0.99866247 -1.00851609 

90 -0.9971151   -1.00535453 -1.00449457 -1.00797667 -1.00636474 

 

UNDER PEER REVIEW



8 | P a g e  
 

 

 

Fig 1. Graphical view of the simulated solution for the Cahn-Hilliard equation 
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The different semi-discretization methods that affect the accuracy of solutions to the stochastic 

Cahn-Hilliard equation 

 

 

Fig 2. Graphical view of semi-discretization methods that affect the accuracy of solutions to 

the stochastic Cahn-Hilliard equation   

 

The analytical bounds for the error in the semi-discretization of the stochastic Cahn-Hilliard 

equation, and how do they vary with respect to different stochastic perturbations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 3. Graphical view of the semi-discretization of the stochastic Cahn-Hilliard equation, 

and how do they vary with respect to different stochastic perturbations 
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discretization 
 

Discussion of Results 

The results presented focus on the simulation of the Stochastic Cahn-Hilliard Equation 

using a semi-discretization approach with the Finite Element Method (FEM). The Cahn-

Hilliard equation is significant in modeling phase separation processes in materials 

science and related fields, particularly when stochastic elements are introduced to account 

for random fluctuations. The results of the simulation are tabulated, showcasing how the 

solution evolves over time steps. Each row in the table represents a discrete time point, 

illustrating the evolution of the system under the influence of noise. For instance, at the 

initial time step (0), the solution U is approximately -0.967, which undergoes fluctuations 

as time progresses, reflecting the stochastic nature of the process. The graphical 

representations illustrate the results: Figure 1: Provides a visual overview of the 

simulated solution for the Cahn-Hilliard equation, allowing for an immediate assessment 

of how the solution stabilizes or oscillates over time. Figure 2: Depicts various semi-

discretization methods, emphasizing their impact on the accuracy of solutions. Different 

methods might yield varying results, which is crucial for selecting appropriate numerical 

techniques. Figure 3: Focuses on the analytical bounds for error in semi-discretization, 

exploring how these bounds change with different stochastic perturbations. This is vital 

for understanding the reliability of the numerical simulations. Figure 4: Discusses the 

influence of noise on the stability and convergence of numerical methods. This aspect is 

particularly important for practitioners wanting to ensure that their models remain robust 

in the presence of random fluctuations. The results illustrate both the complexity and the 

richness of the Stochastic Cahn-Hilliard Equation. The interplay between noise and 

Fig 4. Graphical view of the incorporation of noise in the stochastic Cahn-Hilliard 

equation influence the stability and convergence of numerical methods used for its semi-
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deterministic processes is evident in the simulation output, revealing the challenges in 

accurately modeling such systems. The findings underscore the importance of selecting 

appropriate discretization methods and understanding the implications of stochastic 

perturbations on numerical stability. This discussion serves as a foundation for further 

exploration and refinement of numerical techniques in the context of stochastic partial 

differential equations. 
 

 

Conclusion 

We have very well investigated the semi-discretization of the stochastic Cahn-Hilliard 

equation, a vital model for understanding section separation procedures in multi-aspect mixtures 

inspired with the aid of random fluctuations. By using a finite difference approach for spatial 

discretization, we derived a rigorous analytic mistakes estimate within the L²-norm, setting up a 

clean dating between the spatial resolution and the accuracy of the numerical approximation. Our 

findings demonstrate that the mistake decay is contingent on the smoothness and regularity of 

both the preliminary information and the stochastic noise. Specifically, we've got proven that 

underneath appropriate conditions, the error converges at a 2nd-order charge with respect to the 

spatial grid length. This end result not handiest complements our information of the stochastic 

dynamics concerned in section separation but additionally offers a stable basis for the 

improvement of greater state-of-the-art numerical methods within the simulation of stochastic 

partial differential equations (SPDEs). 

The numerical experiments conducted validate our theoretical outcomes and illustrate the 

realistic implications of the semi-discretization method. As the complexity of real-world 

phenomena will increase, the demanding situations associated with stochastic procedures 

necessitate strong numerical frameworks. Our studies contributes to this enterprise by means of 

imparting each a theoretical and practical foundation for accurately simulating phase separation 

in noisy environments. 
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