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In this paper, we define a weakly compatible mapping of type (P) in Menger space and establish a unique common fixed point theorem for six self-mappings in this space.
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1. Introduction: one of the most significant generalization of metric space was introduced by Karl Menger in 1942 called statistical metric space [11], often known as probabilistic metric space after 1964. The concept of a probabilistic space applies to circumstance in which we do not precisely know the distance between two points but only the probabilities of different values for this distance. In note [11], Menger outlined how to replace the numerical distance between two points x and y by a distribution function F(x, y) whose value F(x, y)(t) at a real number t is interpreted as the probability that the distance between x and y is less then t. Due to B. Schweizer and A. Skalar [3], [4] in 1960, the study of this domain was significantly broadened. This space becomes very active when V.M. Sehgal and A. T. Barucha Reid [18] 1972, obtained a contraction mapping in Menger Probabilistic metric space as a generalization of S. Banach’s[14] well known Banach Contraction Principle in metric space and developed fixed point theorems. In the study of Menger space, S. N. Mishra [15] 1991 developed a compatible mapping in the probabilistic metric space, and then many researchers worked on a large number of compatible mappings. Recently, in 2021, A.K. Chaudhary, K. Jha, K.B. Manandhar, and P.P. Murthy [2] introduced a new notion of compatible mapping of type (P) in Menger space and established a common fixed point theorem by using compatible mapping of type (P) in Menger space which is earlier introduced in metric space by H.K. Pathak, Y.J. Cho, S.S. Chang and S.M. Kang [10] in 1996. And continuing this space study on weakly compatible by [8], [5], [17], and [16]. The purpose of this paper is to define a new notion of weakly compatible mapping of type (p) in Menger space and establish a common fixed point theorem.
2. Preliminaries:
Definition 2.1.[3] If a function F:  is 
(i) is non-decreasing,
(ii) is left continuous, and
(iii) F(x) = 0 and F(x) = 1.
Then, it is said to be distribution function.
Example 1. Let H(x) stands for the heavy side function, which is defined as:

Definition 2.2.[3] Let  (the set of all distribution functions) be a distribution function and K be a non-empty set. Then a pair (K, F) is said to be Probabilistic Metric Space (briefly, PM-Space) if the distribution function F(p, q), , also denoted by F(p, q) or by Fp,q satisfies following conditions: 
(i) 
(ii) ,
(iii)  and
(iv) For every  and for every 
x, y > 0, , .
Here, F(p, q)(x) represents the value of F(p, q) at x ∈ R. 
Definition. 2.3 [13] A function T : [0, 1]  [0,1]  [0, 1] is referred to as triangular norm (shortly T-norm) if it satisfies the following conditions;
(i) T(0, 0) = 0 and T(a, 1) = a for every a  [0, 1],
(ii) T(a, b) = T(b, a) for every a, b  [0, 1],
(iii) T(a, b)  T(c, d) whenever a  c and b  d, and 
(iv) T(a, T(b, c)) = T(T(a, b), c)) , for every a, b, c ∈ [0, 1]).
Definition.2.4 [4] Menger Space, also known as Menger Probabilistic Metric Space, is a triplet (K, F, T), where (K, F) is a PM space, T is a T− norm and also satisfying following conditions:
, for all  and .
Definition.2.5 [19] A mapping  in Menger space (K, F, t) is said to be continuous at a point  if for every  and , there exist  and  such that if
, then .
Definition.2.6 [19] Let (K, F, t) be a Menger space and t be a continuous t-norm then,
(a) A sequence  in K is said to be Converge to a point k in K (written ) iff for every  and , there exist an integer N = (N, ) > 0 such that  for all n  N. in this case, we write .
(b) A sequence  in K is said to be Cauchy sequence if for every  and  there exist an integer N = (N, ) > 0 such that  for all n , m  N.
(c) A Menger space (K, F, T) is said to be Complete if every Cauchy sequence in K converges to a point in K. 
Definition 2.7. [7] Let K be a non-empty set and Q, R : K → K be arbitrary mappings, then k ∈ K is said to be a common fixed point of Q and R if Q(k) = R(k) = k.
Example 2. Let  be functions such that  and , the x = 0 is a common fixed point.
The notion of compatible mapping in Menger space was first introduced by S. N. Mishra[11] in 1991as an extension of compatible mapping in metric space introduced by G. Jungck [7] in 1986.
Definition 2.8. [8] Two mappings  are said to be Compatible Mappings in Menger space (K, F, t) iff
 for all x > 0
Whenever  is a sequence in K such that  for some k in K.
The weakly commuting mappings were introduced by G. Jungck in 1996 as:
Definition 2.9. [8] Two mappings  are said to be weakly commuting in Menger space (K, F, t) iff  for all k in K and x > 0.
Definition 2.10.[5] Two mappings  are said to be weakly compatible or coincidentally commuting in Menger space (K, F, t) if they commute at their coincidence points i.e. if  then .
In 2021, A.K. Chaudhary, K. Jha, K. B. Manandhar, and P.P. Murthy [6] have introduced the following compatible mapping of type (P) in Menger space as an extension of H.K. Pathak et.al [12] as follows: 
Definition 2.11.[2] Two mappings  are said to be Compatible mappings of type (P) in Menger space (K, F, t) iff

Whenever  is a sequence in K such that  for some k in K.
Now we introduce weakly Compatible mappings of type (P) in Menger space with an example as follows: 
Definition 2.12.[10] Two mappings  are said to be Weakly Compatible Mappings of type (P) in Menger space (K, F, t) if and only if 

Whenever  is a sequence in K such that  for some k in K.
Example 3[1]. Let (K, d) be a metric space where K = [0,2] with usual metrics d(x, y) = |x-y| and let (K, F) be PM-space with

For all . Let  be defined by

And 

Taking sequence  where . Then , . Also  and . So that  for all t > 0 and  for all t > 0.
Therefore we have  for all x > 0. Hence (Q, R) are weakly compatible mappings of type (P) but it is neither compatible mappings of type (P) nor compatible mappings.
Theorem 2.1.[19] Let (K, F, t) be a Menger space with continuous t- norm and  be self mapping. Then Q is continuous at a point k  K if and only if for every sequence  in K converging to a point k then sequence  converges to the point Qk. i.e.  then it implies .
Proposition 2.1. [10] In Menger space (K, F, t), if  for all  then t(a, b) = min (a, b) for all a, b  [0, 1].
Lemma 2.1. [5] Let (K, F, t) be a Menger space. If there exist  such that for all , , then p = q.
Proposition 2.2. [1]Let (K, F, t) be a Menger space such that T – norm is continuous and  for all  and  is continuous mappings. Then, Q and R also written as (Q, R), are weakly compatible mappings of type (P) if they are compatible mappings of type (P).
Proof. Suppose Q and R be compatible mappings of type (P). Then, we have, . So, (Q, R) be weakly compatible mappings of type (P).
Proposition 2.3.[1] Let (K, F, t) be a Menger space such that the T – norm t is continuous and  for all  and  is continuous mappings. Then, Q and R also written as (Q, R), are compatible mappings of type (P) if they are weakly compatible mappings of type (P).
Proof. Let  be a sequence in K and since Q and R be continuous mappings. Then by theorem 2.1, we have  for some k in K. If Q and R are weakly compatible mappings of type (P). Then, we have , for all x > 0. So, (Q, R) be compatible mappings type (P).
Proposition 2.4. Let (K, F, t) be a Menger space such that T – norm t is continuous and  for all  and  be mappings. If Q and R are weakly compatible mappings of type (P) and Qk = Rk for some  then, .
Proof. Suppose  is a sequence in K defined by  where k = 1, 2, 3,….. for some  and Qk = Rk. Then we have  as . Since Q and R are weakly compatible mappings of type (P), then for every , . So, QQk = RRk, since Qk = Rk implies QQk = QRk = RQk = RRk.
[bookmark: _Hlk190429383]Proposition 2.5. [1] Let (K, F, t) be a Manger space such that the T−norm t is continuous and t(x, x)x for all x ∈ [0, 1] and Q,R : K → K be mappings. Let Q and R be weakly compatible mappings of type (P) and  for some k in K. Then we have,
(i) if Q is continuous at k,
(ii)  if R is continuous at k,
(iii) QRk = RQk and Qk = Rk if Q and R are continuous at k.
Proof. (i) Suppose that Q is continuous at k. Since, we have  for some k in K. So, , as lim n. Again, since Q and R are weakly compatible of type (P), so for every   . Therefore, we have 
 
by definition of Menger space or, 
 

n
This implies that . So, .
(ii) we may prove (ii), as we prove (i)
(iii) suppose that Q, R : K  K is continuous at k. so, by (i),  , as . On the other hand, since , as  and R is continuous at k. so, by proposition 2.5 (ii), we get, . Thus, we have Qk = Rk by the uniqueness of the limit and so by preposition 2.4, we get QRk = RQk. Hence proved.
The following lemma needs to prove the main theorem:
Lemma 2.2. [5] Let  be a sequence in Menger space (K, F, t), where t is continuous T−norm and  for all x ∈ [0, 1]. If there exists a constant k ∈ [0, 1] such that , for all x > 0 and n ∈ N, then  is a Cauchy sequence in K.
Main Result
Let (X, M, t) be a complete Menger Space with t (x, y) = min{x, y} for all  and  be mappings such that
1 A(X) VT(X) and  B(X)  DS(X) 
2 (A, DS) and (B, VT) are weakly compatible.
3 One of A, B, D, S, V, T be continuous.
4 (B, DS) and (A, VT) are commute each other.
5 There exist a constant  such that

For all x, y X,  (0, 2) and q > 0 where  : [0, 1]  [0, 1] satisfy
(i) is continuous and non-decreasing on [0, 1]
(ii)for all n in [0, 1]
Noting that if , class of all mappings  then ,  and  for all n in [0, 1].
Then A, B, D, S, V and T have a unique common fixed point in X.
Proof: Consider X. Since A(X)  VT(X), so there exist a point  in X such that  . again, since B(X)  DS(X), so for , we may choose  in X such that B and so on
And inductively, we may construct sequence  and  in X such that
     and , for n 0,1,2…..
Putting  and  for all q>0 and r = 1-p with p (0,1) in (5), we get

Or




As p 1, we obtain


 by property of 
Hence we get,

Similarly, we obtain

Therefore, for every n  N, 
So, using lemma (2.2),  is a Cauchy sequence in K.
Since the Menger space (X, M, t) is complete, so  converges to a point z in X and 
consequently the sub-sequences , ,  and  of  also
converges to z.
Now suppose that VT is continuous then since B and VT are weakly compatible mappings of 
type (p) then by proposition (2.5),  as . Putting  
and  in relation (5), we get


As n  

Letting r = 1- p with p (0, 1)



 ,  by property of 
Which implies  z = VTz by lemma 2.1.
Similarly , replacing x by  and y by z in relation (5) we have

Letting n   




, as p  1
So that, 
Or
 , by property of 
Which implies z = Bz by lemma 2.1.
Since by , there exist a point w in X such that Bz = DSw = z.
By putting x = w and y = z in relation (5), we have





Therefore , 
Or, , by property of 
Which implies Aw = z, by lemma 2.1.
Again, since A and DS are weakly compatible are weakly compatible mappings of type(p) and Aw = DSw = z, by proposition 2.4,
We have for every  > 0

Hence  Aw = AAw = DS(DSw) = DSw
Finally, by relation (5) with x = z, y = Bz = z, we have 






Or  by property of 
Which implies   by lemma 2.1.
Hence   Az = Bz = VTz = z.
Now by putting x = z, y = DSz in relation (5), we have 




Or 
 by property of 
Which implies  DSz = z by lemma 2.1.
Now to prove Sz = z, put x = Sz and y = z in relation (5)





 by property of 
Which implies Sz = z by lemma 2.1.
Since DSz = z implies that Dz = z.
Now to prove Tz = z, put x = z, y = Tz in relation (5)
We have,




 
Or
  by property of 
Therefore, Tz = z, by lemma 2.1.
Since VTz = z implies that Vz = z.
Hence .
Therefore z is common fixed point of A, B, D, S, V and T.
Uniqueness: suppose h is another point in X such that
.
Then putting x = z, y = h and r = 1 in relation (5), we get




 by property of 
Which implies that z = h by lemma 2.1.
Hence,  and z is a unique common fixed point for A, B, D, S, V and T in X.
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