
STOCHASTIC ALMOST SURE EXPONENTIAL SELF STABILIZATION 

OF NON-LINEAR OPTIMAL CONTROL DELAY INTEGRO -

This study explores  the application of  multiplicative  Ito-type  noise in 

stabilizing nonlinear optimal control delay differential equations (𝑂𝐶𝐷𝐷𝐸𝑠) that 

are generally  unstable in their deterministic form . The equation is perturbed by a 

multiplicative Ito- type noise to form a stochastic optimal control  delay 

differential equation .The noise scaling parameter in the comparable stochastic 

optimal control system is replaced  with finite integral expression  by making it 

sufficiently as large as possible to stochastically self stabilized the resulting 

stochastic system  in an almost sure exponential sense , under additional conditions 

and sufficiently small time lag  . This phenomenon does not occur in deterministic 
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optimal control delay differential equations where noise is absent , since its 

solutions still admit instability .                                                                                                   

1.Introductions 

Stochastic delay differential equation have found many applications in science and 

technology such as physics, chemistry, structural systems like mechanics , optical 

bi- stability , fatigue cracking , financial mathematics, mathematical biology, radio 

astronomy , turbulent diffusion etc. 

A stochastic differential equation (SDEs) is an  equation in which one or more of 

the terms is a stochastic process, resulting in a solution which is also a stochastic 

process . Ito 1994 laid the foundation of a stochastic calculus known today as the 

Ito calculus. This represents the stochastic generalization of the classical 

differential calculus, which models various phenomena in continuous time such as 

the dynamics of stock prices, physical systems or motion of a microscopic particle 

subjected to random fluctuations. The corresponding stochastic differential 

equations (SDEs) with retarding argument  generalize the ordinary deterministic 

differential delay equation (ODDEs) when subjected to environmental disturbances 

. Stochastic delay equations ( SDES)  are ordinary differential equations perturbed  

by  noise .  
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In general, consider  the first order  nonlinear   ordinary  delay  differential 

equation has the form 

𝑥́(𝑡) =  𝑓(𝑥(𝑡), 𝑋(𝑡 − 𝜎), 𝑡)𝑑𝑡, 𝑡 ≥ 0

𝑥(𝑡) = 𝜑(𝑡)      , 𝑡 ∈ [−Γ ,0]                     
 }                                                                           1.1            

Equation (1.1) can be perturbed by noise to become  

 

𝑑𝑋(𝑡) =  𝑓(𝑋(𝑡), 𝑋(𝑡 − 𝜎), 𝑡)𝑑𝑡 + µ𝑔(𝑋(𝑡))𝑑𝐵(𝑡), 𝑡 ≥ 0

𝑥(𝑡) = 𝑥(𝑡0)    , 𝑡 ∈ [−Γ ,0]                       
 }                                      1. 2            

where (1.1) and (1.2) have the same initial function , 𝑓(𝑋(𝑡), 𝑋(𝑡 − 𝜎), 𝑡)𝑑𝑡 is 

called the drift function  , µ𝑔(𝑋(𝑡))𝑑𝐵(𝑡) is called the diffusion function , 𝜇 is the 

noise scaling parameter which measures the fast fluctuation effect of the noise  and 

𝐵(𝑡) is a one dimensional  Brownian noise given as  𝐵 = {𝐵𝑡}𝑡≥0 defines the 

randomness of the physical systems and it is often called the Ito type noise. The 

wiener process is the simplest intrinsic noise term that adequately model Brownian 

motion. Eq. (1.2)  can be expressed in an integral form as  

𝑋(𝑡) = 𝑋(𝑡0) + ∫ 𝑓(𝑋(𝑠), 𝑋(𝑠 − 𝜎), 𝑠)𝑑𝑠 + ∫ 𝜇𝑔(𝑋(𝑠))𝑑𝐵(𝑠), 𝑡 ≥ 0
𝑡

0

𝑡

0

           1.3  

The first integral in (1.3) is a Volterra integral term and the second integral is an 

           Ito stochastic integral with respect to the Brownian motion 𝐵 = {𝐵𝑡}𝑡≥0.  
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            Definition  

            Let (𝛤, Ω, 𝑃) be a complete probability space with filtration {𝐹𝑡}𝑡≥0
 . A  standard 

one dimensional Brownian  motion  is a real valued continuous 𝐹𝑡- adapted process  

which satisfies the following properties  

          (i)  . 𝐵0 = 0 

          (ii) . the function 𝑡 → 𝐵(𝑡) , is continuous   

          (iii) .for 0 ≤ 𝑠 < 𝑡 < ∞ , the increment 𝐵𝑡 − 𝐵𝑠  is normally distributed with                                      

mean zero and variance  𝑡 − 𝑠  

           (iv) . Increments of  Brownian motion on non overlapping intervals are        

independent , i.e. (𝑠1, 𝑡1) ∩ (𝑠2, 𝑡2) = ∅ . The random variables 𝐵𝑡2 − 𝐵𝑠2 ,𝐵𝑡1 −

𝐵𝑠1 are independent . 

           (v) . Paths of Brownian motion are not differentiable functions . 

 

  Gu .et. al, ( 2016)  examined  the almost sure exponential stability of the multi-

dimensional nonlinear stochastic differential delay equation (SDDE) with variable 

delays of the form. 

𝑑𝑋(𝑡) = 𝛼(𝑋(𝑡 − 𝛿), 𝑡)𝑑𝑡 + 𝛽(𝑋(𝑡 − 𝜎), 𝑡)𝑑𝐵(𝑡)                                    (1.4) 
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Where 𝛿, 𝜎: ℝ+ → [0, Γ] are  the delays. The corresponding deterministic delay 

differential equation (DDE)  has the form  

𝑥́(𝑡) = 𝛼(𝑥(𝑡 − 𝛿), 𝑡)𝑑𝑡                                                                                   (1.5) 

admits the  Lyapunov  function  , there exists a positive number 𝛿 such that the 

𝑆𝐷𝐷𝐸 is almost surely exponentially stable , since the delays were bounded by 𝑡 ∈

[−Γ, 0] where Γ = 𝑚𝑎𝑥{𝛿, 𝜎} . Different types of stochastic differential equations 

have been used to model various  phenomena in many fields , such as unstable 

stock prices in  finance  ( merton , 1976) . In other words, past events explicitly 

influence future  results. Delay differential equations are more applicable than 

ordinary differential equations (ODEs), in which future behavior only implicitly 

depends on the past. Systems of ordinary differential equations are independent on 

previous state or systems of differential equations that are dependent on previous 

states are called systems of delay differential equations (DDEs). Delay differential 

equations were introduced to create more realistic models since many processes 

depend on past history . When  dynamical systems are  subjected to performance  

criterion , aimed at achieving certain objectives , the stability of such systems  can 

form an area of  interest to research on  .  Lyapunov   introduced  the concept of 

stability into  the study  of  dynamic  system since 1892. Stability means 

insensitive of the system  to small changes in its initial state or parameters of the 

system .  
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To understand stability, it is worthy to note that stability is of  different types viz:  

stability in probability, asymptotic stability, stochastic stability , moment stability, 

almost sure exponential stability, mean square stability, etc. For a system to be 

stable , the trajectories  which were close to each other at a specific instant should 

therefore remain close to each other at all subsequent instances  (  Mao 1997)  .   

Zhu and Huang (2020) established the 𝑝𝑡ℎ moment exponential stability problem 

for a class of stochastic delay nonlinear system driven by general Brownian 

motion.  Zong ,et . al (2018) investigated the asymptotic properties of systems 

represented by stochastic functional differential equations . 

Mao (2008) , obtained different types of stabilities for stochastic delay differential 

equations of the form 

                       

𝑑𝑋(𝑡) = 𝑓(𝑋(𝑡), 𝑋(𝑡 − 𝜏1))𝑑𝑡 + 𝑔(𝑋(𝑡)𝑋(𝑡 − 𝜏2))𝑑𝐵(𝑡) , 𝑡 ≥ 0  

 𝑋(𝑡) = 𝜑(𝑡)  ,   𝑡 ∈ [−Γ, 0]
} 

where  Γ = 𝑚𝑎𝑥{𝜏1, 𝜏2} 

where  (𝐵(𝑡)) is the Brownian motion ,𝑓(∗) is the drift term and 𝑔(∗) is the 

diffusion  

 Liu (2017) established a theory about the property of almost sure path-wise 

exponential stability for a class of stochastic neutral functional differential 
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equations by developing a semi group scheme for the drift part of the systems 

under consideration and with path-wise stability through a perturbation approach 

rather than moment stability. Nane and Ni (2017) studied the stabilities of 

stochastic differential equations (𝑆𝐷𝐸𝑆) driven by time changed Levy noise in both 

probability and moment sense . Atonuje (2015)  established that , by  the uses of  

Lyapunov function and the ideas of generalized moment inequalities as well as 

borel -  Cantelli lemma  under additional conditions on the drift and diffusion 

functions, 𝑝𝑡ℎ- moment , exponential stability implies the almost sure exponential 

stability . Zhu et .al (2021) established the almost sure exponential stability and 

exponential stabilization of solution to time changed stochastic differential 

equation  . Zhang et al ,(2019) studied the problem of stabilization and 

destabilization of nonlinear stochastic differential delay equations .The techniques 

applied was the Lassalle – type stability theorems ,the non  - negative semi – 

martingale convergence theorem and the law of large numbers for martingales 

.Their proposed results can be applied to study the stabilization and destabilization 

of more general nonlinear stochastic dynamical time delay systems .  Atonuje  and  

Ezenweani  (2011)  investigated  the stability behavior of a non-linear  

deterministic delay differential equation with two time lags of the form , 

𝑑𝑥(𝑡)
𝑑𝑡

= 𝛼(𝑥(𝑡), 𝑥(𝑡 − 𝜎), 𝑡) + 𝛽(𝑥(𝑡), 𝑥(𝑡 − 𝜏), 𝑡), 𝑡 ≥ 0

𝑥(𝑡) = ɸ(𝑡)  , 𝑡є[−ѓ, 0]
}                (1.6) 
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where  ѓ=max{σ ,𝜏 }, σ, 𝜏 є(0,∞)  , σ<𝜏 are two constant time lags ,the initial 

function  ɸ(𝑡)є𝑐([ѓ, 0], ℜ), 𝛼 𝑎𝑛𝑑 𝛽 are smooth functions which satisfied the  

following  axioms  

(i) 0≤
𝛼(𝑥)

𝑥
≤ 𝜎 , 𝑥 ≠ 0 

(ii) 0≤
𝛽(𝑥)

𝑥
≤  𝜏 , 𝑥 ≠ 0  .                                                                                          

Eq. (1.6)  were stochastically  perturbed by a multiplicative Ito-type  white  noise  

to form a stochastic delay differential equation of the form 

 𝑑𝑋(𝑡) = [𝛼(𝑋(𝑡), 𝑋(𝑡 − 𝜎)) + 𝛽(𝑋(𝑡), 𝑋(𝑡 − 𝜏))]𝑑𝑡 + 𝜆𝑞(𝑋(𝑡), 𝑡)𝑑𝐵(𝑡), 𝑡 ≥ 0

𝑋(𝑡) = 𝜑(𝑡)                                       
} (1.7) 

                                

𝛼, 𝛽є𝐿1([𝑡0, 𝑇], 𝑅𝑑.𝑚
) , 𝜆 𝑖𝑠 𝑡ℎ𝑒 𝑛𝑜𝑖𝑠𝑒 𝑠𝑐𝑎𝑙𝑖𝑛𝑔 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠  𝑎𝑛𝑑 {𝐵(𝑡)}𝑡≥0

 is an 

n - dimensional Brownian motion representing the  multiplicative  white noise Ito- 

type  , it was established that the  presence of  Brownian noise could stochastically 

stabilized an unstable deterministic  delay differential equation ( 𝐷𝐷𝐸𝑠) .  Atonuje  

et . al (2024) investigated the roles of a multiplicative Ito - type Brownian noise to 

stochastically stabilized the evolution of optimal control dynamical system with a 

volterra functional , described by an unstable nonlinear classical delay differential 
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equation . The authors perturbed the equation by a multiplicative Brownian noise 

to form a stochastic optimal control system . The noise scaling parameter in the  

stochastic system were replaced with a finite integral expression , the system 

become stochastically self stabilized in an almost sure exponential sense , under 

certain conditions and sufficiently small time delay . Mao (2010) obtained the 

strong mean square convergence theory for the numerical solutions of stochastic 

delay differential equations under the local lipcshitz  conditions .Also , imposed 

two conditions to guarantee  the existence and uniqueness of the original solutions.  

Zhu et .al (2017) presented sufficient conditions for almost sure exponential 

stability of solutions to time - changed stochastic differential equations . The 

technique involves the construction of proper Lyapunov function and generalized 

Lyapunov methods to time changed stochastic differential equations . In contrast , 

to the almost sure exponential stability in existing papers and established new 

results on the stability of solutions to the time - changed stochastic differential 

equations . Time lag was taken into account for the discrete time state and mean 

square exponential stability of the controlled system was presented by (Qin et . al , 

2016) . Delay feedback control based on discrete time state  observation for 

stochastic differential equations with Markovian switching was considered by (see 

Mao , 2013) . 
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Although, a lot of monographs, conference papers and journal articles have been 

written by various authors on the stability of dynamical systems usually 

represented by ordinary differential equations, delay differential equations , 

stochastic differential equations etc , to the best of my knowledge , the optimal 

control systems  is almost absent from the existing literatures . It appears that a 

little effort have been made on the investigation of the multiplicative Ito-type 

noise to the stabilization and destabilization of solutions of optimal control 

systems .                                                                                                                                   

2 . Problem formulation and Notations                                                                                                                        

We consider a dynamical  system ( 𝑋) whose state at time 𝑡 is described by an 

n−dimensional vector 𝑥(𝑡) = (𝑥1(𝑡), … , 𝑥𝑘(𝑡) . Assume that the system (𝑋) is 

controlled by certain controllers ,if these controllers are characterized at time 𝑡 by 

an 𝑛 − 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙  vector 𝑟(𝑡) = (𝑟1(𝑡), 𝑟2(𝑡) , … , 𝑟𝑛(𝑡)  . Suppose Ω is a 

compact and convex set  in the  𝑛 − 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙  space 𝐴𝑛 with  points  𝑟 =

(𝑟1, … , 𝑟) ,where 𝑟(𝑡) is called  the control vector  or the control function , Ω  is 

called  the control region  . A measurable function  𝑟(𝑡)   defined  for 𝑡 ∈ [𝑡0, 𝑡]  , 

where 𝑡̇ ∈ [𝑡1, 𝑡2]  is called admissible, if their range is in  Ω . Let Ψ   be the set of 

all  admissible control . Suppose  that (𝑋)  is the states  corresponding to the time 
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interval   𝐼 = [𝛾, 𝑡0]  ,where |𝛾| is sufficiently large , is described by an  𝑛 −

𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙 𝑣𝑒𝑐𝑡𝑜𝑟 

Ω(𝑡) ∈ 𝜍([𝛾, 𝑡0], 𝜔)                                                                                         2.1                                 

  where  𝜔 is a compact region in the set 𝐴𝑛 , containing the origin as an interior 

point .  Given  an  𝑟 − 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙   continuous real - valued function , the initial  

function  𝜑 , on the interval  𝛾 ≤ 𝑡 ≤ 𝑡0  and 𝜑(𝑡0)  , find a function  𝑥(𝑡), 

continuous for 𝑡 ≥  𝛾 such that 

𝑥(𝑡) = 𝜑(𝑡) , 𝑓𝑜𝑟 𝛾 ≤ 𝑡 ≤ 𝑡0 ,                                                                         2.2 

   Let ɸ be the set of all allowable initial function 𝜑(𝑡)𝑎𝑛𝑑 𝐸 𝑏𝑒 𝑡ℎ𝑒 set of  all       

allowable control vector 𝑟(𝑡) ,if  Ψ̇ is  a subset of the  𝑛 − 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙  space of 

points with co-ordinates  (𝑟1, 𝑟2 , .  .  . 𝑟𝑛) , suppose  that  the vector  𝑟(𝑡) ∈ Ψ̇ . 

Then the  set 𝐸̇ is  called  the control  region where  Ψ̇ is the range of all 𝑟(𝑡) ∈ Ψ.  

Any element 𝜑(𝑡) ∈ 𝜑  is said to be admissible  initial function and any 𝑟(𝑡) ∈ Ψ 

is said to be an admissible  control  . A pair  {𝜑, 𝑢} with 𝜑(𝑡0)  ∈ 𝜑  𝑎𝑛𝑑 𝑟 ∈ Ψ is 

called admissible pair or admissible policy  . Let 𝑟(𝑡) = 𝑟(𝑡, 𝑡0, 𝜑, 𝑣) be a 

trajectory corresponding  to an admissible pair {𝜑(𝑡0), 𝑢(𝑡)} ∈ 𝑝. suppose that  .  

 a. the trajectories 𝑟(𝑡) which  corresponding  to admissible  pairs {𝜑(𝑡0), 𝑢(𝑡)} 

remain in a given  compact region  𝜔 ∈ 𝐴𝑛  𝑓𝑜𝑟 𝑟(𝑡) = 𝜑(𝑡), 𝑡 ∈ [𝛼, 𝑡0]  . 
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b   the control region Ψ∗  is compact , convex and contains the origin of 𝐴𝑛  as an 

interior point and the members of  the set Ψ  of all  admissible controls consist of 

all measurable functions defined for 𝑡 ∈ [𝑡0, 𝑡] , [ 𝑡̇ ∈ 𝑡1, 𝑡2] , whose range is 

contained   in  Ψ∗   

c   .  during the evolution of the process ,the  integral constraints 

∫ 𝑟𝑖(𝑟, 𝑣, 𝑡)𝑑𝑡 ⊆ 𝑊𝑖  , 𝑖 = 1,2 .  .  . 𝑛
𝑡

𝑡0
   . 

d  .  the region 𝜔 is compact ,convex and contains the  origin of 𝐴𝑛  as an interior 

point and the set 𝜑  of all admissible  initial function which is defined for 𝜑 =

{𝜑(𝑡) ∈ 𝑐([𝛾, 𝑡0], 𝜔} , 𝜑(𝑡)  is  admissible , compact ,convex and contains the 

origin as an interior point .  where 𝑤𝑖  𝑖𝑠 𝑎 𝑐𝑙𝑜𝑠𝑒𝑑 𝑠𝑢𝑏𝑠𝑒𝑡𝑠 𝑜𝑓 𝐴𝑛 

        We consider the optimal controlled system (𝑋)  which is described by the nonlinear  

deterministic ordinary  delay differential equation of the form 

                    𝑥 (𝑡)׳ = 𝑓(𝑥(𝑡), 𝑟(𝑡), 𝑥(𝑡 − 𝜏  ), 𝑡 ) 𝑡 > 0) 

𝑥(𝑡) = 𝜑(𝑡), 𝑡 ∈ [−Γ, 0]
}                                       (2.3)                                                

where 𝑓(𝑥(𝑡), 𝑟(𝑡), 𝑥(𝑡 − 𝜏), 𝑡)𝑑𝑡  is a volterra  functional  defined and bounded 

for 𝑡 ∈ [−𝛤, 0] satisfying  the following  conditions (1)-(4) holds for all 

𝑣(𝑡)є𝜑  𝑎𝑛𝑑 ⍱ 𝑥(𝑡)є𝜍(𝐼[𝑡0, 𝑇], 𝜔), where 𝜔 is a compact subset of an n-

dimensional space 𝐸̇  , F is integrable  and continuous for 𝑥 𝑎𝑛𝑑 𝑟 , 𝜏𝜖(0,1)   is  a 
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constant time lag or delay, 𝑟(𝑡) is the control vector, defined for 𝑡 ∈ [−Γ, 0] and  

𝑥(𝑡) = 𝜑(𝑡), 𝑡 ∈ [−Γ, 0]   with 𝜑(𝑡0) ∈ 𝜑 is the initial datum.  By the solution of 

(2.3) , we  mean a continuous vector  function   𝑥(𝑡) = 𝜑(𝑡) such that 𝑥(𝑡)   

satisfies 𝐸𝑞. (2.3) as well as the initial condition 𝑥(𝑡) = 𝜑(𝑡), 𝑡 ∈ [−Γ, 0], 𝜑(𝑡0) ∈

𝜑  . The solution of equation (2.3) is said to be unstable on [-Γ,0] , if  for every 

𝜀 > 0 and for any  t ≥ 0 . Assume that  𝑥(𝑡  𝑡0, 𝑥0) is the solution of (2.3) with the 

initial datum 𝑥(𝑡) =  𝜑(𝑡) , where  𝑡 ≥ 𝑡0 and 𝑥0 ∈ ℝ .Then  𝑥(𝑡) = 𝜑(𝑡) is said 

to be unstable  if for any ε > 0 and any 𝑡 ≥ 𝑡0  , there exists a  𝜉 = 𝜉(𝜀, 𝑡0) < 0  

such that │𝑥(𝑡0) − 𝜑(𝑡)│ > 0  ⤇  │𝑥(𝑡, 𝑡0, 𝑥0) − 𝜑(𝑡)│ > 𝜀  ∀  𝑡 ≥ 𝑡0 

We  perturbed  Eq. (2.3)  by multiplicative Ito-type Brownian  white noise into a 

stochastic optimal control delay differential equation of the form  

                                                                                                                                                                      

              
𝑑𝑋(𝑡) = 𝑓(𝑋(𝑡), 𝑟(𝑡), 𝑋(𝑡 − 𝜏), 𝑡)𝑑𝑡 + 𝛿ℎ(𝑋(𝑡), 𝑡)𝑑𝐵(𝑡), 𝑡 > 0

𝑥(𝑡) = 𝜑(𝑡) , 𝑡є[−𝛤, 0]                                                           
}         (2.4)                             

                                                                                                                                                             

where  𝑓є𝐿1([𝑡0, 𝑇] , 𝑅𝑑) , ℎє𝐿2([𝑡0, 𝑇], 𝑅𝑑𝑛) , 𝑟(𝑡)  is the control vector , 𝛿 is the noise 

scaling parameter  which determine  the strength of the fluctuation of the system  , 𝑓(∗) is 

called the drift function ,ℎ(∗)  is called  diffusion function ,  

𝜏 ∈(0,1) 𝑖𝑠 𝑐𝑎𝑙𝑙𝑒𝑑 𝑡ℎ𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡  𝑡𝑖𝑚𝑒 𝑙𝑎𝑔 and 𝐵(𝑡) is a Brownian motion , such that 𝐵 =

{𝐵(𝑡), 𝑡 ≥ 0} , defined on the probability triple (𝜑, ℱ, 𝑃) with filtration {𝑋(𝑡)}𝑡≥0
 , defined 

on {𝜑, ℱ, 𝑃} satisfying (2.4) together with the initial datum which is the same with that of the  

𝑂𝐶𝐷𝐷𝐸𝑆 (2.3).                                                                                                       We intends 

to ask this question, what can replace the noise intensity parameter in the stochastic equation  

such that the system would be stochastically self stabilized  ?.By replacing the noise scaling 

parameter 𝛿  in equation (2.4)  with finite integral expression  
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𝛿 = ∫ |𝛼(. )𝑥(. )|
𝑡

0

𝑛
𝑑𝑠  into equation (2.4) , we have  

     𝑑𝑋(𝑡) = 𝑓(𝑋(𝑡), 𝑟(𝑡), 𝑋(𝑡 − 𝜏), 𝑡) + (∫ |𝛼(. )𝑋(. )|𝑛𝑡

0
) 𝑔(𝑋(𝑡), 𝑡)𝑑𝐵    

           𝑋(𝑡) = 𝜑(𝑡)  ,   𝑡 ≥ 0                                                                                                                      
} 2.5 

Eq. (2.5) becomes stochastic optimal control integro delay differential equation 

(𝑆𝑂𝐶𝐼𝐷𝐷𝐸𝑆) . 

  

               Definition (The trivial solution of  SOCIDDE) 

               Assume that {𝑋(𝑡)}𝑡≥0
 is the solution of (2.5) . Suppose that 𝑓(0,0,0, 𝑡) ≡

0, 𝑔(0,0,0) ≡ 0  ∀ 𝑡 > 0 . It follows that (2.5) has the solution 𝑋(𝑡) ≡

0 corresponding  to the initial datum 𝑋(𝑡0) ≡ 0 is called the  trivial  solution of (2.5) 

.  

                Definition (2) 

                        The equilibrium solution  𝑋(𝑡, 0,0,0) of the SOCIDDE (2.5) is said to be almost 

surely exponentially stable  if  

                 lim
𝑡→∞

𝑠𝑢𝑝
1

𝑡
𝑙𝑜𝑔|𝑋(𝑡, 𝑡0, 𝑥0 , 𝑖| < 0  ∀ 𝑋0 ∈ 𝑅𝑑  . 

                The following Assumptions , Lemmas and Theorems are based on the Ito formula  is 

called exponential martingale inequality . it is useful to the proof of the main results . 

                 Assumption(1)  

                H1:  we assume that the following hypothesis hold  

                             (i) |𝑋𝑇∆𝑓(𝑋, 𝑡) + 𝑋𝑇∆𝑔(𝑋, 𝑡) ≤ 𝐻|𝑋𝑇∆𝑋|2| 

                            (ii) Trace (ℎ𝑇(𝑋, 𝑡)∆ℎ(𝑥, 𝑡) ≤ 𝜋𝑋𝑇∆𝑋)  

                            (iii) |ℎ𝑇(𝑋, 𝑡)∆ℎ(𝑥, 𝑡)|2 ≥ 𝛾|𝑋𝑇∆𝑋|2  ∀  𝑡 > 0 , 𝑎𝑛𝑑 𝑥 ∈ 𝑅𝑑 

                H2: There exists a pair of constants 𝑀 > 0 𝑎𝑛𝑑 𝑦 ≥ 0 such that ‖𝛼(𝑡)‖ ≤ 𝑀𝑒𝛼𝑡   

                     ∀ 𝑡 ≥ 0 , where 𝛼(𝑡) is convergence rate function given by 𝛼(𝑡)𝑒𝛼𝑡𝐼𝑑.𝑑 where 𝐼𝑑.𝑑 

is the 𝑑 × 𝑑 identity matrix 

Definition  (convergence rate function) 
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A  function 𝛼(𝑡) is a continuous real valued function on  𝑅𝑛𝑑  and a positive 

constant 𝑀 > 0 such that ‖𝛼(𝑡)‖ ≤ 𝑀𝑒𝛼𝑡 , ∀ 𝑡 ≥ 0  . 

The convergence  rate function plays a vital role in making the noise scaling 

parameter  large enough  to stabilized the system almost surely exponentially self 

stabilized .  

  3.     Main result                                                                                                                                                                             

Lemma  (3) 

If (H1) hold . Then the solution of the stochastic optimal control  integro-

differential delay equation  

𝑑𝑋(𝑡) = 𝑓(𝑋(𝑡), 𝑉(𝑡), 𝑋(𝑡 − 𝜏), 𝑡)𝑑𝑡 + (∫ |𝛼(𝑠)𝑋(𝑠)|𝑛𝑔(𝑥(𝑡), 𝑡)𝑑𝐵(𝑡)
𝑡

𝑡0

) 

has the property 𝑃{𝑥(𝑡, 𝑥0) ≠ 0 ∀ 𝑡 ≥ 0} = 1 , almost surly such that 𝑥0 ≠ 0 . 

                  Lemma   (3.1) 

                    Consider the system  

                 𝑑𝑋(𝑡) = [𝑓(𝑋(𝑡), 𝑉(𝑡), 𝑋(𝑡 − 𝜏), 𝑡)]𝑑𝑡 + (∫ |𝛼(𝑠)𝑋(𝑠)|𝑛𝑔(𝑥(𝑡), 𝑡)𝑑𝐵(𝑡)
𝑡

𝑡0
)   (3.1)     

                suppose that there exists a function 𝛼 ∈ 𝐶2,1(𝑅𝑑 × [0, ∞), 𝑅) , the family of all non 

negative function𝛼 (𝑥, 𝑡) define on 𝑅𝑑 × [0, ∞), 𝑅) such that they are continuously 

twice differential in 𝑥 𝑎𝑛𝑑 𝑡 𝑎𝑛𝑑 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠 ℎ > 0, 𝑘 > 0, 𝑞2 ∈ 𝑅, 𝑞3 ≥ 0 such that 

∀ 𝑥 ≠ 0 , 𝑡 ≥ 0 ,we have  

               (a) . 𝑞1|𝑥|ℎ ≤ 𝛾(𝑥, 𝑡) 

               (b) .𝐿𝛾(𝑥, 𝑡) ≤ 𝑞2𝛾(𝑥, 𝑡) 

               (c) . |𝛾𝑥(𝑥, 𝑡)𝑔(𝑥, 𝑡)|2 ≥ 𝑞3𝛾2(𝑥, 𝑡) . Then  

               lim
𝑡→∞

𝑠𝑢𝑝
1

𝑡
𝑙𝑜𝑔|𝑥(𝑡, 𝑡0, 𝑥0)| ≤ −

𝑞3−2𝑞2

2𝑛
                                        (3.2)                                                                                                                     

Then the solution of the stochastic optimal control  integro-differential delay 

equation  (3.1)  almost surely ∀  𝑥0 ∈ 𝑅𝑑  . If in particular that 𝑞3 > 2𝑞2 , the 

solution of stochastic optimal control delay differential equation  (3.1) is almost 

surely exponentially self stabilized . 
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Theorem  (4)  

            If  ( H1) and ( H2)  holds . Then the solution of the stochastic  integro-

differential  delay   equation  (3.1) satisfies the property that                                                                                                                           

∫ ∣ ℎ(𝑡)𝑥(𝑡, 𝑥0) ∣𝑛< ∞ , ∀ 𝑥0 ∈  𝑅                                                         (3.3)
∞

0
                                                                     

  

                                                                    Proof                                                                                                     

Since 𝑥(𝑡, 0) ≡ 0  guarantees  (H1) , we show that (3.3) holds for 

𝑥0 ≠ 0. 

For every 𝑥0 ≠ 0 , lemma (1 ), the solution 𝑥(𝑡, 𝑥0) ≠ 0  , with positive probability 

for all 𝑡 ≥ 0 almost surely . If the  property  (3.3) is not true  By contradiction , 

there exists some 𝑥0 ≠ 0 for which 𝑝(𝝍∗) ≥0 , where 

𝝋∗ = {ꙍє𝝋: ∫ ∣ 𝒉(𝒕)𝒙(𝒕, 𝒙𝟎) ∣𝒏 𝒅𝒕 = ∞}
∞

𝟎

 

Let 𝒙(𝒕) = 𝒙(𝒕, 𝒙𝟎). By condition H1 and Ito formula , we show that for every 𝒕 ≥

𝟎 , we have 

𝐥𝐨𝐠(𝑿𝑻(𝒕)H𝒙(𝒕)) ≤ 𝐥𝐨𝐠(𝒙𝑻H 𝒙𝟎) +
𝟐𝒎𝒕

𝝀𝒎𝒊𝒏(Ω)
+ τ ∫ (∫ |𝒉(𝒗)𝒙(𝒗)|

𝒔

𝟎

𝒏
𝒅𝒗)

𝟐
𝒅𝒔

𝒕

𝟎
      * 

                                  

−𝟐 ∫ (∫ |𝒉(𝒗)𝒙(𝒗)|𝒏𝒅𝒗
𝒔

𝟎

)

𝟐
|𝑿𝑻(𝒔)Ω𝒈(𝒙(𝒔), 𝒔)|

(𝒙𝑻(𝒔)Ω𝒙(𝒔))
𝟐

𝒕

𝟎

𝟐

𝒅𝒔 + 𝑵(𝒕) 

 .   

where 

𝑵(𝒕) = 𝟐 ∫ (∫ |𝒉(𝒗)𝒙(𝒗)|𝒏𝒅𝒗
𝒔

𝟎

)

𝒏
𝒙𝑻(𝒔)Ω𝒈(𝒙(𝒔), 𝒔)

𝒙𝑻(𝒔)Ω𝒙(𝒔)

𝒕

𝟎

𝒅𝑩(𝒔) 

is a continuous  martingale  vanishing at point 𝒕 = 𝟎  .  For  𝑪 = 𝟏 , 𝟐 , … ,. and by 

the exponential martingale inequality , we have  

𝑝 {𝜕: sup
0≤𝑡≤𝑐

[𝑁(𝑡) −
2𝛾 − 𝛼 

8𝛾
 〈𝑁(𝑡), 𝑁(𝑡)〉]} >

8𝛾𝑙𝑜𝑔𝑐

2𝛾 − 𝛼
≤

1

𝑐2
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where 

〈𝑁(𝑡), 𝑁(𝑡)〉 = 4 ∫ (∫ |ℎ(𝑉)𝑥(𝑣)|𝑑𝑣
𝑠

0

)

2𝑡

0

|𝑥𝑇(𝑆)Ω𝑔(𝑋(𝑆), 𝑆)|

(𝑥𝑇(𝑠)Ω𝑥(𝑠)2

2

𝑑𝑠 

  

By the Borel  Cantelli lemma we see that for almost all 𝜕 ∈ 𝝍 , there exists a 

random integer 𝒄(𝝏) such that ∀ 𝒄 ≥ 𝒄𝟏  we have 

sup

0 ≤ t ≤ k
[𝑁(𝑡) −

2𝜏 − 𝛼

8𝜏
〈𝑁(𝑡), 𝑁(𝑡)〉] ≤

8𝛾𝑙𝑜𝑔𝑐

2𝛾 − 𝛼
                    (3.4) 

  

for 0 ≤ 𝑡 ≤ 𝑐,              

𝑁(𝑡) ≤
8𝛾 log 𝐶

2𝛾 − 𝜇
+

2𝛾 − 𝜌

8𝛾
〈𝐻(𝑡), 𝐻(𝑡)〉                                                                      

≤
8𝛾 log 𝐶

2𝛾 − 𝜇
+

2𝛾 − 𝜌

2𝛾
∫ (|ℎ(𝑢)𝑥(𝑢)|𝑛𝑑𝑢)2

|𝑥𝑇(𝑠)𝜂𝑔(𝑥(𝑠), 𝑠)|2

(𝑥𝑇(𝑆)𝜂𝑥(𝑠))
2

𝑡

0

𝑑𝑠                 (3.5) 

Put  (∗) into (3.5) and by (𝐻1) , we have  

log(𝑥𝑇(𝑡)𝐻𝑥(𝑡)) ≤ log(𝑥0𝐻𝑥0) +
2𝑚𝑡

φ𝑚𝑖𝑛(Ω)
+

8𝛾 log 𝑐

2𝛾 − 𝜇
 

−
2𝛾 − 𝜇

2
∫ (∫ |ℎ(𝑢)𝑥(𝑢)|

𝑠

0

𝑛

𝑑𝑢)

2

𝑑𝑠                                                                        (3.6)
𝑡

0

 

∀  0 ≤ 𝑡 ≤ 𝑐 , 𝑐 ≥ 𝑐1                                               ,  

, almost surely . By the definition of 𝜑∗ , we observed that for every 𝜕 ∈ 𝜑∗ , there 

exists a random integer 𝑧2(𝜑) such that 

∫ |ℎ(𝑠)𝑥(𝑠)|𝑛𝑑𝑠 ≥ √
     4𝑘 φ

𝑚𝑖𝑛
(Ω)⁄ + 4𝜇 + 8                  

2𝛾 − 𝜇

𝑡

0

∀ 𝑡 ≥ 𝑧2          (3.7) 

From  (3.6) 𝑎𝑛𝑑 (3.7) almost 𝜕 ∈ 𝜑∗ , if 𝑐 − 1 ≤ 𝑡 ≤ 𝑐 , 𝑐 ≥ 𝑐1⋁(𝑐2 + 1) .Then  

log(𝑥𝑇(𝑡)𝐻𝑥(𝑡)) ≤ log(𝑥0𝐻𝑥0) +
2𝑚𝑡

φ𝑚𝑖𝑛(Ω)
+

8𝛾 log 𝑐

2𝛾 − 𝜇
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                      −
2𝛾 − 𝜇

2
∫ (∫ |ℎ(𝑢)𝑥(𝑢)|

𝑠

0

𝑛

𝑑𝑢)

2

𝑑𝑠                                                                          (3.8)
𝑡

0

 

≤ log(𝑥𝑇(𝑡)𝐻𝑥(𝑡)) +
2𝑚𝑡

φ
𝑚𝑖𝑛

(Ω)
+

8𝛾 log 𝑐

2𝛾 − 𝜇
− (

2𝑐

φ
𝑚𝑖𝑛

(Ω)
+ 2𝜇 + 4) (𝑐 − 1 − 𝑐2) 

= log(𝑥0
𝑇𝐻𝑥0) +

2𝑐(𝑐2 + 1)

φ𝑚𝑖𝑛(Ω)
+

8𝛾 log 𝑐

2𝛾 − 𝜇
− 2(𝜏 + 2)(𝑐 − 1 − 𝑐2) 

conversely ,  

1

𝑡
log(𝑥𝑇(𝑡)𝐻𝑥(𝑡)) ≤

1

𝑐 − 1
(log(𝑥0

𝑇𝐻𝑥0)) +
2𝑐(𝑐2 + 1)

φ
𝑚𝑖𝑛

(Ω)
+

8𝛾 log 𝑐

2𝛾 − 𝜇
 

−2(𝜏 + 2)(𝑐 − 1 − 𝑐2) 

Then , 

lim
𝑡→→∞

1

𝑡
log(𝑥𝑇(𝑡)𝐻𝑥(𝑡)) ≤ −2(𝜏 + 2)                                         (3.9) , ∀ 𝜕 ∈

𝜑∗                                                         

Hence ,  , ∀ 𝜕 ∈ 𝜑∗  , there exists a random number 𝐶3(𝜑) such that  

lim
𝑡→→∞

1

𝑡
log(𝑥𝑇(𝑡)𝐻𝑥(𝑡)) ≤ −2(𝜏 + 2)    , ∀ 𝑡 ≥ 𝐶3  

Thus , 

|𝑥(𝑡)| ≤
𝑒−(𝜏+2)𝑡

√φ𝑚𝑖𝑛(Ω)
        ∀   𝑡 ≥ 𝐶3 

By the convergence rate function , almost all  𝜕 ∈ 𝜑∗ such that  

∫ |ℎ(𝑡)𝑥(𝑡)|𝑛𝑑𝑡 ≤ ∫ 𝑁𝑛𝑒𝑛𝜏𝑡|𝑥(𝑡)|𝑛𝑑𝑡 + ∫
𝑁𝑛𝑒−𝑛𝑡

[φ𝑚𝑖𝑛(Ω)]𝑛 2⁄
𝑑𝑡 < ∞

∞

0

𝑐3

0

∞

0

     (4.0) 

This contradicts the definition of 𝜑∗ . Hence , equation   (4.0) satisfies the 

condition  that  

 ∫ |ℎ(𝑡)𝑥(𝑡, 𝑥0)|𝑛𝑑𝑡 < ∞
∞

0
 . 

Theorem  (5) 
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assume that (𝐻1) 𝑎𝑛𝑑 (𝐻2) are satisfied  for every 𝑥0 ∈ 𝑅𝑑  , either 

∫ |ℎ(𝑡)𝑥(𝑡)|𝑛𝑑𝑡 ≤ √
2𝑁

(2𝛾 − 𝜇)φ𝑚𝑖𝑛(Ω)
                                      (5.1)

∞

0

 

                                                                   or 

lim
𝑡→∞

𝑠𝑢𝑝
1

𝑡
log(|𝑥(𝑡, 𝑥0)|) < 0                                                                   (5.2)      

                 Proof  

Let 𝑥(𝑡) = 𝑥(𝑡, 𝑥0)  ∀ 𝑥0 ≠ 0 . We only needs to show that the 

conclusion is true. 

if 𝜑∗ = {𝜕 ∈ 𝜑: ∫ |ℎ(𝑡)𝑥(𝑡)|𝑛𝑑𝑡 > √
2𝑁

(2𝛾−𝜇)φ𝑚𝑖𝑛(Ω)
          

∞

0
}                           (5.3)     

                                                                                                                                                                                       

We want to show that  equation (5.2)  holds for almost   all 𝜕 ∈ 𝜑∗ .  

Let 𝜑𝑐
∗ = {𝜕 ∈ 𝜑: ∫ |ℎ(𝑡)𝑥(𝑡)|𝑛𝑑𝑡 > (1 + 𝑐)√

2𝑁

(2𝛾−𝜇)φ𝑚𝑖𝑛(Ω)
          

∞

0
}        

for 𝑐 = 1, 2 ,3 

suppose that 𝜑∗ = ⋃𝜑𝑐
∗ , we show that for every 𝑘 ≥

1 , lim
𝑡→∞

𝑠𝑢𝑝
1

𝑡
log(|𝑥(𝑡, 𝑥0)|)                              

holds for almost all  𝜕 ∈ 𝜑∗ . Let  𝑘 ≥ 1 .  For every  𝜕 ∈ 𝜑 − 𝜑∗ , with 

𝜑∗ and  𝑝 − 𝑛𝑢𝑙𝑙 𝑠𝑒𝑡  , there exists a random integer 𝐶4(𝜑) such that  

log(𝑥𝑇(𝑡)𝐻𝑥(𝑡)) ≤ log(𝑥0
𝑇𝐻𝑥0) +

2𝑚𝑡

φ𝑚𝑖𝑛(Ω)
+

4𝛾(1 + 𝑘−1) log 𝑐

2𝛾 − 𝜇
 

−
2𝛾 − 𝜇

1 + 𝑘−1
∫ (∫ |ℎ(𝑢)𝑥(𝑢)|

𝑠

0

𝑛

𝑑𝑢)

2

𝑑𝑠                                      (5.4)     
𝑡

0

 

∀  0 ≤ 𝑡 ≤ 𝑐, 𝑐 ≥ 𝑐4         .  
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Conversely , for every   𝜕 ∈ 𝜑∗ , there exists a random number 𝐶5(𝜕)  

such that  

                

∫ |ℎ(𝑠)𝑥(𝑠)|𝑛𝑑𝑡 > (1 + 𝑐−1)√
2𝑁

(2𝛾 − 𝜇)φ𝑚𝑖𝑛(Ω)
                      (5.5)  

𝑡

0

 

, ∀  𝑡 ≥ 𝐶5                . 

From equation   (5.4) and (5.5)  , we observed that almost all  𝜕 ∈ 𝜑 −

𝜑∗ , if 𝑐 − 1 ≤ 𝑡 ≤ 𝑐  , 𝑐 ≥ 𝑐4⋁(𝑐5 + 1) . 

 

log(𝑥𝑇(𝑡)𝐻𝑥(𝑡)) ≤ log(𝑥0
𝑇𝐻𝑥0) +

2𝑐(𝑐5 + 1)

φ𝑚𝑖𝑛(Ω)
+

4𝛾(1 + 𝑐−1) log 𝑐

2𝛾 − 𝜇
 

−
2𝑐

cφ𝑚𝑖𝑛(Ω)
(𝑐 − 1 − 𝑐5) 

Then the  lim
𝑡→∞

𝑠𝑢𝑝
1

𝑡
log(|𝑥(𝑡, 𝑥0)|)  ≤  −

2𝑐

cφ𝑚𝑖𝑛(Ω)
   ∀   𝜕 ∈ 𝜑𝑐 −

       𝜑∗          .                  

lim
𝑡→∞

𝑠𝑢𝑝
1

𝑡
log(|𝑥(𝑡)|)  ≤  −

𝑐

cφ𝑚𝑖𝑛(Ω)
< 0   ∀   𝜕 ∈ 𝜑𝑐 − 𝜑∗          .                  

Thus , if   

∫ |ℎ(𝑡)𝑥(𝑡, 𝑥0)|𝑛𝑑𝑡 > (1 + 𝑐−1)√
2𝑁

(2𝛾 − 𝜇)φ𝑚𝑖𝑛(Ω)
                     .   

𝑡

0

 

Hence , theorem (5) shows that if  

∫ |ℎ(𝑡)𝑥(𝑡, 𝑥0)|𝑛𝑑𝑡 > √
2𝑁

(2𝛾−𝜇)φ𝑚𝑖𝑛(Ω)
                       ,

∞

0
 then the solution of 

stochastic optimal control  delay integro -differential equation  tends to 

zero exponentially under additional condition and small time lag . 

 

                                                                 Conclusion . 
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In  this study , We established the almost sure exponential stability of the non-

linear stochastic optimal control integro- differential equations  (𝑆𝑂𝐶𝐼𝐷𝐷𝐸𝑆) with 

constant delay or time lag . under lemma (3.1) , condition (𝑎) − (𝑐) and Η1 holds 

for the system (3.2) to be almost surely exponentially stable    . Our findings 

reveal that , by replacing the noise scaling parameter of the stochastic system  

with finite integral expression and Η2 , the system stabilized itself in an almost 

sure exponential sense . The sampled Lyapunov exponent must always kept  finite 

for the stochastic system to be self stabilized in an exponential sense .  

References 

Anonwa I . D , Atonuje A. O and Igabari J . N (2025) . Exponential almost sure 

stabilization of nonlinear delay differential systems under stochastic optimal 

control driven by Ito Brownian noise. Asian research journal of mathematics 

21(1):78-86. 

Atonuje. A. O. (2015). A Review of the Pth moment Exponential Stability and 

Almost Sure Exponential Stability of Nonlinear Stochastic Delay 

Differential Equations with Time Lag . Nigeria Journal of Mathematics and 

Applications (24) 100-111. 

Atonuje , A. O and Ezenweani , U .L (2011) . Instability and stochastic 

stabilization in solutions of delay differential equations with two delays 

.Journal of Mathematical sciences 23(1) 207 -214 .  

 

Atonuje , A . O , Ojarikre H . I and Okposo N . I (2024) . Stochastic stabilization of 

time lag optimal control systems with volterra functional using Brownian 

noise . Article in cienciae tecnica vitivinicola 37(4) 2416 - 3953 . 

Gu,Q ,Mao,X, and Yue, R. (2016). Almost Sure Exponential Stability of Stochastic 

Differential Delay Equations. Siam Journal of Control and Optimization  

45(4):1919-1933  

Ito , K . (1944) . Stochastic Integral Process . Imperial Academy . Tokyo, 20:519-

524. 

                                                                                               

Liu , K .(2017) ,Almost sure exponential stability sensitive to small time delay of  

stochastic neutral functional differential  equations . Applied mathematics 

letters  (77) 57-63 

UNDER PEER REVIEW



  

 

Mao, X .(1997) . Stochastic Differential Equations and Applications . Horwood 

Publishing Chichester .  

Mao. X (2010) . Numerical solutions of stochastic functional differential equations 

. London mathematical society . Journal of computational and mathematics 

(6)141 - 161  

Mao , X .(2013) . Stabilization of continuous time hybrid stochastic differential 

equations by discrete time feedback control . Automatica 49(12)3677-3681. 

Mao . X (2008) .Stochastic differential Equations and Applications . 2nd Edition , 

Horwood publisher chichester . 

Merton . C, (1976) .Option pricing when underlying stock returns are 

discontinuous . Journal of financial  Economics 3(1-2), 125-1235 . 

 

Nane . E and Ni . N.Y(2017) . Stability of the solution of stochastic differential 

equations driven by time - changed Levy noise .American mathematical 

society (145) 3085-3104 

 

Oguztoreli , M .N (1966) .  Time - lag control systems . Academic press , New 

York. 

Song , X ,Yin , G ,Li , T (2018) . stability of stochastic functional differential 

systems using degenerate Lyapunov  functional and applications . 

Automatica (91) 197-207 

 

Zhang . X ,Y, H and Shu .H (2019) . Stabilization and destabilization of nonlinear 

stochastic delay differential equations . International journal of probability 

and stochastic processes 92(1)124 -139 

Zhu , M ,Li .J. P and Liu D .Z (2021) . Exponential stability for time - changed 

stochastic differential equation (37)617-627 

Zhu , Q ,Huang , T (2020) .Stability analysis for a class of stochastic delay 

nonlinear systems driven by G- Brownian motion . System control letters 

140,104699 . 

 

UNDER PEER REVIEW



Zhu . X .Y , Zhu . M , Li P .J (2017) .Almost sure exponential stability for time 

changed stochastic differential equations . Journal of nonlinear science 

applications (10)5985-5998 

 

                                            

UNDER PEER REVIEW


