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Abstract 
In this study, stability analysis of the first order of explicit finite difference methods (EFDM) for 

multiplicative noise NSDEs is examined. Numerical methods ND FM is an established technique that has 

already found applications for solving PDEs in heat conduction, fluid dynamics, and wave propagation, 

among others. Stability concerns are vital for precise numerical solutions; therefore, their performance 

depends on them. This study analyzes the numerical stability of the EFDM to determine its stability under 

specified conditions utilizing stability criteria, including the CFL condition and von Neumann stability 

analysis. The paper examines how spatial domain discretization parameters like time step size and spatial 

resolution affect the numerical stability of solutions. NSDEs need unique stability criteria because wrong 

parameter choice causes numerical instabilities, as shown by sample comparative investigations. The 

presented work also examines the stability effects of stochastic integrators like Itô and Stratonovich ones 

and their strengths and weaknesses. Discretization options affect EFDM system stability and stochastic 

integrators, as shown by numerical simulations. Results are tabulated and graphed to highlight solution 

unpredictability and parameter dependency on stability. The results demonstrate the necessity to balance 

arithmetic speed and numeric precision and offer methodological insights into stochastic analysis using 

EFDM. Through a detailed analysis at high resolution, the present work improves the existing 

information on the stability of EFDM and the identification of novel computationally efficient numerical 

approaches for large-scale problems. 

 

Introduction 
The explicit finite difference method (EFDM) is an elementary numerical approach used 

for solving PDEs that describe various physical processes such as fluid dynamics, heat 

conduction, and wave motion. Since EFDM discretizes both time and space domains, it is easily 

used to reward the solutions to such problems. However, one of the main issues that is related to 

the EFDM is the question of the stability of the numerical solution, as noted by Pederson and 

Raja (2019). Stability in numerical methods is about how a small change in the input of the 

numerically solved problem affects the results by altering the starting or boundary condition. The 

scheme may produce non-oscillatory, non-convergent, or unphysical solutions; therefore, 

stability analysis is compulsory. The importance of this analysis is clear given that numerous 

practical problems use EFDM to make predictions, so it is important to recognize the conditions 

under which this method is stable, Shahrokhabadi (2017). 

The primary stability measure for the EFDM system is the CFL condition, or Courant-

Friedrichs-Lewy condition. This condition defines a fundamental connection between the spatial 

and temporal discretization parameters to set constraints on the size of an allowed time step 

compared to the size of the spatial grid. The CFL condition makes sure the information 

disseminates properly in the numerical field, remains stable, and does not make errors worse 

with time (Courant, Courant (1928). Besides the CFL condition, the von Neumann stability 

analysis is another frequently used method to estimate the stability of an explicit finite difference 

scheme. In this approach, one assumes a solution form and studies the amplification factors 

related to the perturbations that result in conditions for stability given by the eigenvalue of the 

discretized operator as stated by Xia et al. (2019). These analyses not only offer researchers 

relevant information on the stability characteristics of certain schemes but also enable 

practitioners to choose the correct discretization parameters. 



Stability is pivotal in igniting fundamental comprehension for reliable and accurate 

number simulations. While further investigations into stability analysis methods would continue 

to be conducted, constant advancements in computational methods would continue to provide 

new ways of improving existing algorithms and addressing complex systems. In this paper, I 

give a brief analysis of the stability of explicit finite difference methods, including the theoretical 

background and stability parameters for numerical simulations. 

 

Importance of Stability 

Stability is very crucial, especially in numerical simulations, because it underlines our 

outcomes in terms of precision. An unstable method will give wrong values, and as such, 

stability analysis forms part of the development and usage of numerical methods. The arbitrarily 

described finite difference method is rather effective, but its implementation depends heavily on 

the choice of discretization parameters, so the stability properties of the method should be 

carefully studied. 

 

Stability Criteria 

1. The Courant-Friedrichs-Lewy (CFL) Condition 

The CFL condition is a basic stability condition for the stability of the explicit finite 

difference technique for parabolic and hyperbolic PDEs. It also gives the relation between the 

time step size (∆t), spatial step size (∆x), and the wave speed (c) in the problem under 

consideration. For a one-dimensional hyperbolic PDE, the CFL condition can be expressed as: 

 
𝐶∆𝑡

∆𝑥
≤ 1      (1) 

 

This condition makes sure that the numerical domain of dependence encloses the physical 

domain of dependence so information does not go far in one time step. To work around the CFL 

condition, one can advance the solution in time with a smaller time step size; however, violating 

the CFL condition results in instabilities and finally non-physical oscillations and divergence of 

the solution. 

 

 

2. Von Neumann Stability Analysis 

The Von Neumann stability analysis is widely applied for the evaluation of the stability of 

explicit finite difference schemes. The method involves assuming a solution of the form: 

 

𝑢𝑗
𝑛 =  ξ𝑛e𝑖𝑘𝑗      (2) 

 

where ξ is the amplification factor, k is the wave number, and 𝑗 and 𝑛 denote spatial and time 

respectively. By allowing this form into the finite difference equations, one can obtain the 

amplification factor ξ. Stability requires that: 

 

|ξ| ≤  1     (3) 

 

This condition ensures that any disturbances which characterise the numerical solution do not 

escalate further with time as the simulation proceeds. 

 



Research Questions 

1. What are the conditions under which explicit finite difference methods maintain stability 

for neutral stochastic differential equations with multiplicative noise? 

2. How does the choice of discretization parameters, such as time step size and spatial grid 

resolution, influence the stability properties of explicit finite difference schemes for 

neutral stochastic equations? 

3. What are the implications of different stochastic integrators (e.g., Itô vs. Stratonovich) on 

the stability analysis of explicit finite difference methods applied to neutral stochastic 

equations? 

 

Literature Reviews 

The stability of explicit finite difference methods is an important consideration when 

carrying out computations for neutral stochastic differential equations. Various studies carried 

out in the various years proposed the necessity to develop stability criteria depending on the 

peculiarity of NSDEs. For example, Asadzade and Mahmudov (2024) examine finite-time 

stability of fractional stochastic neutral delay differential equations, which can be used to 

establish the convergence and stability analysis of solutions in terms of given conditions. To 

experience this work highlights the importance of bringing strong mathematical concepts and 

methods to bear in order to maintain the stability of numerical solutions. 

The stability of the other explicit finite difference methods depends on the other 

discretization parameters, including the size of the time step size and the spatial resolution. 

Several studies have shown that incorrect choice of these parameterizations can cause numerical 

oscillations of the solution, specifically in the case of NSDEs. Tian et al. (2024), in a recent 

study show that, settings of these parameters influence the stability bounds of explicit schemes 

and that these must be optimized to yield accurate numerical outcomes. Ahmad et al. (2025). 

This research also demonstrates the need to perform stability analysis in a way that will capture 

the characteristics of neutral stochastic systems. 

It has been discovered that the stabilities of the methods can also be affected by the 

choice of applied stochastic integrators. Specifically, the solutions based on Itô and Stratonovich 

integrals give different stabilities when applied to NSDEs. A few studies thereof have been 

published recently, and these studies have shown that the selection of the integrator variable 

drastically influences the convergence of the obtained numerical solution. An overview by 

Oladayo (2025) addresses these considerations of these integrators on explicit finite difference 

methods for carrying out stability analysis and means of choosing the correct integrators for 

further use. This comparison is important for practitioners who wish to apply numerically stable 

methods in stochastic computation. 

As unconventional methods for solving NSDEs, the application of explicit finite 

difference methods is vast and ranges across engineering and finance. The stability of these 

methods is crucial for achieving realistic modeling of the multifarious dynamics of systems. For 

example, Okwuwe and Oduselu-Hassan (2024) on the stability analysis of explicit integration in 

financial mathematics, where NSDEs are used for asset prices under uncertainty: Asadzade and 

Mahmudov (2024). Based on their results, they stressed the importance of stability analysis when 

dealing with practical systems and reaffirmed the importance of using accurate numerical 

techniques that can cope with the uncertainties existing in stochastic systems. 

 

Significance of the Findings 



The following are the significance of the findings 

1.  Stability Insights: The study demonstrates how stability analysis represents a vital 

requirement for EFDM since unstable operations produce either non-convergent or 

physically incorrect numerical outcomes. Specific conditions for maintaining stability in 

EFDM are identified using both Courant-Friedrichs-Lewy (CFL) conditions and von 

Neumann stability analytical tools. 

2.  Impact of Discretization Parameters: A detailed investigation shows that NSDEs operated 

under EFDM depend uniquely on both temporal step size choices and spatial resolution 

decisions for maintaining stability. Optimization of numerical parameters results in more 

precise computations, which improve both accuracy and operational speed. At the same 

time, poorly selected parameters may introduce numerical instabilities into the system. 

3.  Role of Stochastic Integrators: Research results demonstrate how selecting between Itô 

and Stratonovich stochastic integrators affects stability together with solution accuracy 

levels. Application-specific criteria benefit from direction provided by these findings that 

lead to proper method selection. 

4.  Application Scope: The practical applications extend from heat conduction to fluid 

dynamics and wave propagation and financial modeling systems. The study shows how 

EFDM functions efficiently to tackle large-scale computational difficulties by providing a 

compromise between calculation speed and numerical precision. 

5. Enrichment of Methodology: The paper contributes to existing knowledge about EFDM 

stability by using numerical analysis of its stochastic performance. The work discovers 

approaches to create more efficient computational techniques. 

 
Neutral Stochastic Differential Equation (NSDE) 

Finite difference schemes for neutral stochastic equations involve discretizing both the time and 

space variables to obtain numerical solutions.  

 

A general form of a neutral stochastic differential equation can be expressed as: 

 

𝑑𝑥(𝑡) =  𝑓(𝑥(𝑡), 𝑥(𝑡 − 𝜏), 𝑡)𝑑𝑡 + 𝑔(𝑥(𝑡), 𝑡)𝑑𝑊(𝑡)  (4) 

where: 

(𝑡) is the state variable, 

𝜏 is the delay, 

(𝑡) is a Wiener process (standard Brownian motion), 

𝑓 is a deterministic function, 

𝑔 is a stochastic function. 

 

Finite Difference Discretization 

To solve this equation using finite difference methods, we discretize the time domain with a step 

size Δ𝑡 and denote discrete time points as 𝑡𝑛 = 𝑛Δ𝑡 for 𝑛 = 0, 1, 2, … 

 

Discretization Scheme 

i. Forward Difference for Time Derivative: 

 

The time derivative can be approximated using the forward difference: 

 



𝑥(𝑡𝑛+1)  ≈  𝑥(𝑡𝑛)  +  𝛥𝑡 ⋅ 𝑓(𝑥(𝑡𝑛), 𝑥(𝑡𝑛 −  𝜏), 𝑡𝑛)  +  𝑔(𝑥(𝑡𝑛), 𝑡𝑛) 𝛥𝑊𝑛  (5)   

 

where Δ𝑊𝑛 = 𝑊(𝑡𝑛+1) – 𝑊(𝑡𝑛) is the increment of the Wiener process, which can be 

approximated as Δ𝑊𝑛 ∼ √𝛥𝑡𝑍𝑛, with 𝑍𝑛  being a standard normal random variable. 

 

ii. Handling Delays: 

The delayed term (𝑡−𝜏) needs to be handled carefully. If  

𝜏 corresponds to integer multiples of Δ𝑡, we can simply use: 

 
𝑥(𝑡𝑛 −  𝜏) ≈  𝑥(𝑡𝑛−𝑚)     (6) 

 

where  

𝑚 =  
𝜏

Δ𝑡
     (7) 

 
iii. Complete Scheme: 

The complete explicit finite difference scheme for the NSDE can then be written as: 

 

𝑥𝑛+1 =  𝑥𝑛  +  𝛥𝑡 ⋅ 𝑓(𝑥𝑛, 𝑥𝑛−𝑚, 𝑡𝑛) +  𝑔(𝑥𝑛, 𝑡𝑛)√Δ𝑡𝑍𝑛   (8) 

 
Stability Analysis 

To analyze the stability of the finite difference scheme, one typically examines the amplification 

factors associated with the discretization. The following steps can be taken: 

 

Linearization: 

If applicable, linearize the functions 𝑓 and 𝑔 around a fixed point. 

 

Stability Criterion: 

Derive a stability criterion based on the spectral radius of the amplification matrix, ensuring it 

remains within the unit circle for stability. 

 

Lyapunov Functions: 

Use Lyapunov functions to establish conditions under which the numerical solution remains 

bounded over time. 

 

 

Numerical Simulations 

Example 

Consider a simple neutral stochastic equation: 

 

𝑑𝑥(𝑡) =  −𝛼𝑥(𝑡)𝑑𝑡 + 𝛽𝑥(𝑡 − 𝜏)𝑑𝑡 + 𝜎𝑑𝑊(𝑡)   (9) 

Using 

𝑥𝑛+1 =  𝑥𝑛(1 − 𝛼Δ𝑡)  +  𝑥𝑛−𝑚(𝛽Δ𝑡) +  𝜎√Δ𝑡𝑍𝑛   (10) 

 

The implementation of an explicit finite difference method for solving neutral stochastic 

differential equations (SDEs) with multiplicative noise. 



 

𝑑𝑥(𝑡) =  𝑓(𝑥(𝑡), 𝑥(𝑡 − 𝜏), 𝑡)𝑑𝑡 + 𝑔(𝑥(𝑡), 𝑡)𝑑𝑊(𝑡) 
 

Time (t) X(t) 

0.0 1.000 

0.1 0.995 

0.2 1.002 

0.3 1.010 

0.4 0.980 
0.5 1.020 

0.6 1.005 
0.7 0.975 
0.8 0.990 

0.9 1.005 
1.0 0.950 

 

 

 

  

  

  

  

 

 

 

 

 

 

 

 

 
Figure 1. Neutral Stochastic Differential Equation solution using explicit finite difference Method 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Neutral SDE solution using explicit finite difference Method 3D 

Analyze of the discretization parameters, such as time step size and spatial grid resolution, 

influence the stability properties of explicit finite difference schemes for neutral stochastic 

differential equations (SDEs). The solution is visualized with 1D plots for clarity: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3. Stability Analysis of Explicit Finite Difference Scheme 1D 

 



The analysis of how discretization parameters (time step size and spatial grid resolution) 

influence the stability properties of explicit finite difference schemes for neutral stochastic 

equations. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4. Stability Analysis of Explicit Finite Difference Scheme 3D 

An analysis for the implications of different stochastic integrators (e.g., Itô vs. 

Stratonovich) on the stability of explicit finite difference methods applied to neutral 

stochastic equations. 



Figure 5. Mean Comparison and Variance Comparison in 1d 

 
The implications of different stochastic integrators (Itô vs. Stratonovich) on the stability analysis 

of explicit finite difference methods for neutral stochastic equations.  

 

 
 

Figure 6. Ito Integration Stability and Stratonovich Integration Stability 3D 
 

Discussion of Result 
The paper focuses on methodology for the numerical solutions and stability analysis of 

neutral stochastic differential equations (SDEs) and confidentiality and non-neutrality in 



explicitly finite difference methods. Here we use an explicit finite difference scheme for the 

discretization of neutral stochastic differential equations with multiplicative noise. In a tabulated 

form, the time evolution of the solution is given, which shows how X(t) is altering at certain time 

intervals. Notable observations include: The variability of X(t) is stochastic as seen from the 

variation in the values at different time periods. Evidently, the risk value increases over time, and 

although there are variations that deviate from the general tendency, these fluctuations are 

referred to as stochastic variation. The solution behavior is supported by two graphs provided the 

Figure 1 (1D) and Figure 2 (3D), which illustrate the results. 

Stability of the explicit finite difference scheme relies considerably on the discretization 

parameters, which include time step size and spatial grid resolution. Key insights include that 

these parameters present stability conditions that are dependent on time steps, where large time 

steps or smaller spatial grids may lead to divergence or instability. The stability analysis is 

plotted in Figure 3 (1D) and Figure 4 (3D) to compare the stability for different parameters. The 

results reemphasize the consideration of computational efficiency and stability when selecting 

appropriate discretization parameters; in doing so, the performance differences and tradeoffs 

have been identified. 

A comparison between the Itô and Stratonovich stochastic integrators and their effect on 

stability. The analysis reveals: Itô integration appears to be more sensitive to discretization 

adjustments, a fact that may cause stability problems in some situations. Stratonovich integration 

is more stable in some instances but less excellent in other cases depending on the model 

requirement. These effects are given in Figure 5 about the mean and variance comparison and 

Figure 6 about the 3D stability representation under both integrators. 

The analysis highlights several critical aspects of solving neutral SDEs using explicit 

finite difference methods: Numerical Solution Trends: The data of the solutions are stochastic as 

expected, and the tabulated and plotted results offer a good feel of the solution profile. Stability 

Considerations: It also implies that the size of the time step and the spatial resolution have to be 

well chosen to obtain stable results. The analysis also shows here how incorrect choice of 

parameters can lead to disastrous effects. Choice of Stochastic Integrator: Depending on the type 

of integrator to be selected, the quality of integration, specifically stability and accuracy, is 

greatly influenced, pointing to the fact that a certain problem context is important when choosing 

the integration method to be used. 
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